27 resultados para Electrical resistivity

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seismic refraction and electrical resistivity geophysical techniques were used to reconstruct the internal architecture of a drumlin in Co. Down, Northern Ireland. Geophysical results were both validated and complemented by borehole drilling, ground water flow modelling, and geologic mapping. The geophysical anatomy of the drumlin consists of five successive layers with depth including; topsoil, partially saturated and saturated glacial tills, and weathered and more competent greywacke bedrock. There are numerous, often extensive inclusions of clay, sand, gravel, cobbles, and boulders within the topsoil and the till units. Together geophysical and geotechnical findings imply that the drumlin is part of the subglacial lodgement, melt-out, debris flow, sheet flow facies described by previous authors, and formed by re-sedimentation and streamlining of pre-existing sediments during deglaciation of the Late Devensian ice sheet. Seismic refraction imaging is particularly well suited to delineating layering within the drumlin, and is able to reconstruct depths to interfaces to within ± 0.5 m accuracy. Refraction imaging ascertained that the weathered bedrock layer is continuous and of substantial thickness, so that it acts as a basal aquifer which underdrains the bulk of the drumlin. Electrical resistivity imaging was found to be capable of delineating relative spatial changes in the moisture content of the till units, as well as mapping sedimentary inclusions within the till. The moisture content appeared to be elevated near the margins of the drumlin, which may infer a weakening of the drumlin slopes. Our findings advocate the use of seismic refraction and electrical resistivity methods in future sedimentological and geotechnical studies of internal drumlin architecture and drumlin formation, owing particularly to the superior, 3- D spatial coverage of these methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents experimental tests carried out on steel fibre reinforced concrete samples, including mechanical tests as well as non-destructive technique (electrical resistivity) and non destructive technique on cores (X-ray). Electrical resistivity measurements are done as a blind test, to characterise the electrical anisotropy and deduce the distribution and the orientation of fibres. These results are compared to X-ray imaging to check the quality of the non destructive evaluation. Then, flexural and compressive strength are measured on specimens to assess the influence of fibre distribution on the concrete properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, considerable efforts have been made in the attempt to map quick clay areas using electrical resistivity measurements. However there is a lack of understanding regarding which soil parameters control the measured resistivity values. To address this issue, inverted resistivity values from 15 marine clay sites in Norway have been compared with basic geotechnical index properties. It was found that the resistivity value is strongly controlled by the salt content of the pore fluid. Resistivity decreases rapidly with increasing salt content. There is also a relatively clear trend of decreasing resistivity with increasing clay content and plasticity index. Resistivity values become very low (˜5 O·m) for high clay content (>50%), medium- to high-plasticity (Ip ˜ 20%) materials with salt content values greater than about 8 g/L (or corresponding remoulded shear strength values greater than 4 kPa). For the range of values studied, there is poor correlation between resistivity and bulk density and between resistivity and water content. The data studied suggest that the range of resistivity values corresponding to quick clay is 10 to 100 O·m, which is consistent with other published limits. A comparison is made between two-dimensional electrical resistivity tomography (ERT) and resistivity cone penetration test (RCPTU) data for two of the sites and the two sets of data show similar trends and values irrespective of scale effect.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There is a growing interest in the use of geophysical methods to aid investigation and monitoring of complex biogeochemical environments, for example delineation of contaminants and microbial activity related to land contamination. We combined geophysical monitoring with chemical and microbiological analysis to create a conceptual biogeochemical model of processes around a contaminant plume within a manufactured gas plant site. Self-potential, induced polarization and electrical resistivity techniques were used to monitor the plume. We propose that an exceptionally strong (>800 mV peak to peak) dipolar SP anomaly represents a microbial fuel cell operating in the subsurface. The electromagnetic and electrical geophysical data delineated a shallow aerobic perched water body containing conductive gasworks waste which acts as the abiotic cathode of microbial fuel cell. This is separated from the plume below by a thin clay layer across the site. Microbiological evidence suggests that degradation of organic contaminants in the plume is dominated by the presence of ammonium and its subsequent degradation. We propose that the degradation of contaminants by microbial communities at the edge of the plume provides a source of electrons and acts as the anode of the fuel cell. We hypothesize that ions and electrons are transferred through the clay layer that was punctured during the trial pitting phase of the investigation. This is inferred to act as an electronic conductor connecting the biologically mediated anode to the abiotic cathode. Integrated electrical geophysical techniques appear well suited to act as rapid, low cost sustainable tools to monitor biodegradation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The validation of variable-density flow models simulating seawater intrusion in coastal aquifers requires information about concentration distribution in groundwater. Electrical resistivity tomography (ERT) provides relevant data for this purpose. However, inverse modeling is not accurate because of the non-uniqueness of solutions. Such difficulties in evaluating seawater intrusion can be overcome by coupling geophysical data and groundwater modeling. First, the resistivity distribution obtained by inverse geo-electrical modeling is established. Second, a 3-D variable-density flow hydrogeological model is developed. Third, using Archie's Law, the electrical resistivity model deduced from salt concentration is compared to the formerly interpreted electrical model. Finally, aside from that usual comparison-validation, the theoretical geophysical response of concentrations simulated with the groundwater model can be compared to field-measured resistivity data. This constitutes a cross-validation of both the inverse geo-electrical model and the groundwater model.
[Comte, J.-C., and O. Banton (2007), Cross-validation of geo-electrical and hydrogeological models to evaluate seawater intrusion in coastal aquifers, Geophys. Res. Lett., 34, L10402, doi:10.1029/2007GL029981.]

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two mechanisms of conduction were identified from temperature dependent (120 K-340 K) DC electrical resistivity measurements of composites of poly(c-caprolactone) (PCL) and multi-walled carbon nanotubes (MWCNTs). Activation of variable range hopping (VRH) occurred at lower temperatures than that for temperature fluctuation induced tunneling (TFIT). Experimental data was in good agreement with the VRH model in contrast to the TFIT model, where broadening of tunnel junctions and increasing electrical resistivity at T > T-g is a consequence of a large difference in the coefficients of thermal expansion of PCL and MWCNTs. A numerical model was developed to explain this behavior accounting for a thermal expansion effect by supposing the large increase in electrical resistivity corresponds to the larger relative deformation due to thermal expansion associated with disintegration of the conductive MWCNT network. MWCNTs had a significant nucleating effect on PCL resulting in increased PCL crystallinity and an electrically insulating layer between MWCNTs. The onset of rheological percolation at similar to 0.18 vol% MWCNTs was clearly evident as storage modulus, G' and complex viscosity, vertical bar eta*vertical bar increased by several orders of magnitude. From Cole-Cole and Van Gurp-Palmen plots, and extraction of crossover points (G(c)) from overlaying plots of G' and G '' as a function of frequency, the onset of rheological percolation at 0.18 vol% MWCNTs was confirmed, a similar MWCNT loading to that determined for electrical percolation. 

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Antrim Coast Road stretching from the seaport of Larne in the East of Northern Ireland has a well-deserved reputation for being one of the most spectacular roads in Europe (Day, 2006). However the problematic geology; Jurassic Lias Clay and Triassic Mudstone overlain by Cretaceous Limestone and Tertiary Basalt, and environmental variables result in frequent instances of slope instability manifested in both shallow debris flows and occasional massive rotational movements, creating a geotechnical risk to this highway. This paper describes how a variety of techniques are being used to both assess instability and monitor movement of these active slopes near one site at Straidkilly Point, Glenarm. An in-depth understanding of the geology was obtained via boreholes, resistivity surveys and laboratory testing. Environmental variables recorded by an on-site weather station were correlated with measured pore water pressure and soil moisture infiltration data. Terrestrial LiDAR (TLS), with surveys carried out on a bi-monthly basis allowed for the generation of Digital Elevation Models (DEMs) of difference, highlighting areas of recent movement, accumulation and depletion. Morphology parameters were generated from the DEMs and include slope, curvature and multiple measures of roughness. Changes in the structure of the slope coupled with morphological parameters were characterised and linked to progressive failures from the temporal monitoring. In addition to TLS monitoring, Aerial LiDAR datasets were used for the spatio-morphological characterisation of the slope on a macro scale. A Differential Global Positioning System (dGPS) was also deployed on site to provide a real-time warning system for gross movements, which were also correlated with environmental conditions. Frequent electrical resistivity tomography (ERT) surveys were also implemented to provide a better understanding of long-term changes in soil moisture and help to define the complex geology. The paper describes how the data obtained via a diverse range of methods has been combined to facilitate a more informed management regime of geotechnical risk by the Northern Ireland Roads Service.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ground-penetrating radar (GPR) is a rapid geophysical technique that we have used to assess four illegally buried waste locations in Northern Ireland. GPR allowed informed positioning of the less-rapid, if more accurate use of electrical resistivity imaging (ERI). In conductive waste, GPR signal loss can be used to map the areal extent of waste, allowing ERI survey lines to be positioned. In less conductive waste the geometry of the burial can be ascertained from GPR alone, allowing rapid assessment. In both circumstances, the conjunctive use of GPR and ERI is considered best practice for cross-validation of results and enhancing data interpretation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In small islands, a freshwater lens can develop due to the recharge induced by rain. Magnitude and spatial distribution of this recharge control the elevation of freshwater and the depth of its interface with salt water. Therefore, the study of lens morphology gives useful information on both the recharge and water uptake due to evapotranspiration by vegetation. Electrical resistivity tomography was applied on a small coral reef island, giving relevant information on the lens structure. Variable density groundwater flow models were then applied to simulate freshwater behavior. Cross validation of the geoelectrical model and the groundwater model showed that recharge exceeds water uptake in dunes with little vegetation, allowing the lens to develop. Conversely, in the low-lying and densely vegetated sectors, where water uptake exceeds recharge, the lens cannot develop and seawater intrusion occurs. This combined modeling method constitutes an original approach to evaluate effective groundwater recharge in such environments.
[Comte, J.-C., O. Banton, J.-L. Join, and G. Cabioch (2010), Evaluation of effective groundwater recharge of freshwater lens in small islands by the combined modeling of geoelectrical data and water heads, Water Resour. Res., 46, W06601, doi:10.1029/2009WR008058.]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The performance of the surface zone of concrete is acknowledged as a major factor governing the rate of deterioration of reinforced concrete structures as it provides the only barrier to the ingress of water containing dissolved ionic species such as chlorides which, ultimately, initiate corrosion of the reinforcement. In-situ monitoring of cover-zone concrete is therefore critical in attempting to make realistic predictions as to the in-service performance of the structure. To this end, this paper presents developments in a remote interrogation system to allow continuous, real-time monitoring of the cover-zone concrete from an office setting. Use is made of a multi-electrode array embedded within cover-zone concrete to acquire discretized electrical resistivity and temperature measurements, with both parameters monitored spatially and temporally. On-site instrumentation, which allows remote interrogation of concrete samples placed at a marine exposure site, is detailed, together with data handling and processing procedures. Site-measurements highlight the influence of temperature on electrical resistivity and an Arrhenius-based temperature correction protocol is developed using on-site measurements to standardize resistivity data to a reference temperature; this is an advancement over the use of laboratory-based procedures. The testing methodology and interrogation system represents a robust, low-cost and high-value technique which could be deployed for intelligent monitoring of reinforced concrete structures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fibre distribution and orientation in a series of round panel specimens of ultra high performance fibre reinforced concrete (UHPFRC) was investigated using electrical resistivity measurements and confirmed by X-ray CT imaging. By pouring specimens in different ways, the orientation of steel fibres was influenced and the sensitivity of the electrical resistivity technique was investigated. The round panels were tested in flexure and the results are discussed in relation to the observed orientation of fibres in the panels. It was found that the fibres tended to align perpendicular to the direction of flow. As a result, panels poured from the centre were significantly stronger than panels poured by other methods because the alignment of fibres led to more fibres bridging the radial cracks formed during mechanical testing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The durability of reinforced concrete structures depends, in the main, on the performance of the cover-zone concrete as it is this which protects the steel from the external environment. This paper focusses on the use of discretised electrical property measurements to study depth-related features during both the curing and post-curing period thereby allowing an integrated assessment of the protective properties of the cover region. In the current work, use is made of a small, multi-electrode array embedded within the surface 75mm of concrete specimens. Concretes were manufactured with different European cements (CEM) and water/binder ratios representing mixes which satisfied the minimum requirements for a range of environmental exposure classes including exposure to chlorides. Electrical resistance measurements were taken over a period in excess of 300 days which showed on-going hydration, pozzolanic reaction and pore-structure refinement; in addition, in the post-curing period, when exposed to a cyclic chloride ponding regime, measurements could be used to study the convective zone and ionic enrichment of the surface layer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In many coastal areas of North America and Scandinavia, post-glacial clay sediments have emerged above sea level due to iso-static uplift. These clays are often destabilised by fresh water leaching and transformed to so-called quick clays as at the investigated area at Smørgrav, Norway. Slight mechanical disturbances of these materials may trigger landslides. Since the leaching increases the electrical resistivity of quick clay as compared to normal marine clay, the application of electromagnetic (EM) methods is of particular interest in the study of quick clay structures.

For the first time, single and joint inversions of direct-current resistivity (DCR), radiomagnetotelluric (RMT) and controlled-source audiomagnetotelluric (CSAMT) data were applied to delineate a zone of quick clay. The resulting 2-D models of electrical resistivity correlate excellently with previously published data from a ground conductivity metre and resistivity logs from two resistivity cone penetration tests (RCPT) into marine clay and quick clay. The RCPT log into the central part of the quick clay identifies the electrical resistivity of the quick clay structure to lie between 10 and 80 O m. In combination with the 2-D inversion models, it becomes possible to delineate the vertical and horizontal extent of the quick clay zone. As compared to the inversions of single data sets, the joint inversion model exhibits sharper resistivity contrasts and its resistivity values are more characteristic of the expected geology. In our preferred joint inversion model, there is a clear demarcation between dry soil, marine clay, quick clay and bedrock, which consists of alum shale and limestone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the results of field geophysical testing and laboratory testing of peat from Carn Park and Roosky raised bogs in the Irish Midlands. The motivation for the work was highlight the importance of these areas and to begin to attempt to understand the reasons for the failure of the bogs despite them having surface slopes of some 1°. It was found that the peat is typical of that of Irish raised bogs being up to 8m thick towards the “high” dome of the bogs. The peat is characterised by low density, high water content, high organic content, low undrained shear strength and high compressibility. The peat is also relatively permeable at in situ stress. Geophysical electrical resistivity tomography and ground penetrating radar data shows a clear thinning of the peat in the area of the failures corresponding to a reduction in volume from dewatering by edge drains/peat harvesting. This finding is supported by detailed water content measurements. It was also shown that the peat base topography is relatively flat and indicates that the observed surface movement has come from within the peat rather than from the material below the peat. Potential causes of the failures include conventional slope instability, the effect of seepage forces or the release of built-up gas in the peat mass. Further measurements are required in order to study these in more detail.