99 resultados para Electric discharges

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reliable measurement of the electron energy distribution function (EEDF) of plasmas is one of the most important subjects of plasma diagnostics, because this piece of information is the key to understand basic discharge mechanisms. Specific problems arise in the case of RF-excited plasmas, since the properties of electrons are subject to changes on a nanosecond time scale and show pronounced spatial anisotropy. We report on a novel spectroscopic method for phase- and space-resolved measurements of the electron energy distribution function of energetic (> 12 eV) electrons in RF discharges. These electrons dominate excitation and ionization processes and are therefore of particular interest. The technique is based on time-dependent measurements during the RF cycle of excited-state populations of rare gases admixed in small fractions. These measurements yield � in combination with an analytical model � detailed information on the excitation processes. Phase-resolved optical emission spectroscopy allows us to overcome the difficulties connected with the very low densities (107�109 cm�3) and the transient character of the electrons in the sheath region. The EEDF of electrons accelerated in the sheath region can be described by a shifted Maxwellian with a drift velocity component in direction of the electric field. The method yields the high-energy tail of the EEDF on an absolute scale. The applicability of the method is demonstrated at a capacitively coupled RF discharge in hydrogen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electron dynamics in the low-pressure operation regime ($«$ 5 Pa) of a neon capacitively coupled plasma is investigated using phase-resolved optical emission spectroscopy. Plasma ionization and sustainment mechanisms are governed by the expanding and contracting sheath and complex wave–particle interactions. Electrons are energized through the advancing and retreating electric field of the RF sheath. The associated interaction of energetic sheath electrons with thermal bulk plasma electrons drives a two-stream instability also dissipating power in the plasma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental and finite element modelling methods are used to study the formation of vapour layers in electrical discharges through saline solutions. The experiments utilize shadowgraphic and photometric methods to observe the time dependence of thin vapour layers and plasma formation around electrodes driven by moderate voltage (<500 V) pulses, applied to an electrode immersed in a conducting saline solution. Finite element multiphysics software, coupling thermal and electrical effects, is employed to model the vapour layer formation. All relevant electrical and thermal properties of the saline are incorporated into the model, but hydrodynamic and surface tension effects are ignored. Experimental shadowgraph and modelling images are compared, as are current histories, and the agreement is very good. The comparison of experiment and modelling gives insight into both vapour layer production and subsequent plasma production. We show that, for example, superheating of the saline above its normal vaporization temperature may be playing a significant role in vapour formation. We also show that electric fields of approaching 10(7) V m(-1) can be achieved in the vapour layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dielectric properties of Au/[93%Pb(Mg1/3Nb2/3)O-3-7%PbTiO3] (PMN-PT)/(La0.5Sr0.5)CoO3/MgO thin-film capacitor heterostructures, made using pulsed laser deposition, have been investigated, with particular emphasis on the changes in response associated with increasing the magnitude of the ac measuring field. It was found that increasing the ac field caused a change in the frequency spectrum of relaxators, increasing the speed of response of "slow" relaxators, with an associated decrease in the freezing temperature (T-f) of the relaxor system; in addition, other characteristic parameters relating to polar relaxation (activation energy E-a and attempt frequency 1/tau(0)), described by fitting of the dielectric response to a Vogel-Fulcher expression, were found to change continuously as ac field levels were increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reproducible modulations in low-pressure, inductively coupled discharges operating in chlorine and argon-chlorine mixtures have been observed and studied. Changes in the light output, floating potential, negative ion fraction, and charged particle densities were observed. Here we report two types of unstable operational modes in an inductively coupled discharge. On the one hand, when the discharge was matched, to minimize reflected power, instabilities were observed in argon-chlorine plasmas over limited operating conditions of input power and gas pressure. The instability window decreased with increasing chlorine content and was observed for chlorine concentrations between 30% and 60% only. However, when operating at pressures below 5 mTorr and the discharge circuit detuned to increase the reflected power, modulations were observed in a pure chlorine discharge. These modulations varied in nature from a series of sharp bursts to a very periodic behavior and can be controlled, by variation of the matching conditions, to produce an apparent pulsed plasma environment. (C) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acceleration of multi-MeV protons from the rear surface of thin solid foils irradiated by an intense (similar to 10(18) W/cm(2)) and short (similar to 1.5 ps) laser pulse has been investigated using transverse proton probing. The structure of the electric field driving the expansion of the proton beam has been resolved with high spatial and temporal resolution. The main features of the experimental observations, namely, an initial intense sheath field and a late time field peaking at the beam front, are consistent with the results from particle-in-cell and fluid simulations of thin plasma expansion into a vacuum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of high-intensity laser pulses with matter releases instantaneously ultra-large currents of highly energetic electrons, leading to the generation of highly-transient, large-amplitude electric and magnetic fields. We report results of recent experiments in which such charge dynamics have been studied by using proton probing techniques able to provide maps of the electrostatic fields with high spatial and temporal resolution. The dynamics of ponderomotive channeling in underdense plasmas have been studied in this way, as also the processes of Debye sheath formation and MeV ion front expansion at the rear of laser-irradiated thin metallic foils. Laser-driven impulsive fields at the surface of solid targets can be applied for energy-selective ion beam focusing.