155 resultados para Edith Patch
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
An innovative bioadhesive patch intended primarily as a vulval drug delivery system and, specifically, as a means to deliver photosensitisers, or their prodrugs, for photodynamic purposes is described. The patch was formulated with a copolymer of methyl vinyl ether and maleic anhydride (PMVE/MA) as a bioadhesive matrix and poly(vinyl chloride) as a drug-impervious backing layer. Adhesive strength to neonate porcine skin, as a model substrate, was evaluated using peel and tensile testing measurements. Acceptabilities of non-drug loaded patches were appraised using human volunteers and visual-analogue scoring devices. An optimal formulation, with water uptake and peel strengths appropriate for vulval drug delivery, was cast from a 20% (w/w) PMVE/MA solution and adhered with a strength of approximately 1.7 N cm-2. Patient evaluation demonstrated comfort and firm attachment for up to 4 h in mobile patients. Aminolevulinic acid, a commonly used photosensitiser, was formulated into the candidate formulation and applied to vulval intraepithelial neoplastic lesions. Fluorescence under ultraviolet illumination revealed protoporphyrin synthesis. The patch achieves the extended application times obligatory in topical photodynamic therapy of vulval lesions, thereby contributing to potential methods for the eradication of neoplastic lesions in the lower female reproductive tract.
Resumo:
Aminolevulinic acid (ALA) stability within topical formulations intended for photodynamic therapy (PDT) is poor due to dimerisation to pyrazine-2,5-dipropionic acid (PY). Most strategies to improve stability use low pH vehicles, which can cause cutaneous irritancy. To overcome this problem, a novel approach is investigated that uses a non-aqueous vehicle to retard proton-induced charge separation across the 4-carbonyl group on ALA and lessen nucleophilic attack that leads to condensation dimerisation. Bioadhesive anhydrous vehicles based on methylvinylether-maleic anhydride copolymer patches and poly(ethyleneglycol) or glycerol thickened poly(acrylic acid) gels were formulated. ALA stability fell below pharmaceutically acceptable levels after 6 months, with bioadhesive patches stored at 5°C demonstrating the best stability by maintaining 86.2% of their original loading. Glycerol-based gels maintained 40.2% in similar conditions. However, ALA loss did not correspond to expected increases in PY, indicating the presence of another degradative process that prevented dimerisation. Nuclear magnetic resonance (NMR) analysis was inconclusive in respect of the mechanism observed in the patch system, but showed clearly that an esterification reaction involving ALA and both glycerol and poly(ethyleneglycol) was occurring. This was especially marked in the glycerol gels, where only 2.21% of the total expected PY was detected after 204 days at 5°C. Non-specific esterase hydrolysis demonstrated that ALA was recoverable from the gel systems, further supporting esterified binding within the gel matrices. It is conceivable that skin esterases could duplicate this finding upon topical application of the gel and convert these derivatives back to ALA in situ, provided skin penetration is not affected adversely.
Resumo:
Clinical use of the imidazoquinoline immunomodulator imiquimod for the topical treatment of dysplastic and neoplastic lesions has increased markedly in recent years. However, despite guidance from the manufacturer of the proprietary imiquimod cream, there seems to be little consensus between clinicians as to the topically applied dose. Given that patients often apply the cream themselves at home, further dosing variability is expected and, consequently, accurate comparison of the results of different published studies is dif?cult. This paper describes, for the ?rst time, the formulation and physicochemical characterisation of a bioadhesive patch for dose-controlled topical delivery of imiquimod as well as a new HPLC method for sensitive ?uorescence determination of imiquimod released from such systems. Patches containing imiquimod loadings of 4.75, 9.50 and 12.50 mg cm-2 all released signi?cantly more drug across a model membrane than the proprietary cream over a period of 6 h. Inclusion of imiquimod in patches did not adversely affect their physicochemical properties. Of major importance, patches contained de?ned drug loadings per unit area; therefore, their use could reduce inter-clinician variability. This would make critical comparison of clinical studies and determination of an appropriate imiquimod dose for successful treatment much simpler. Since bioadhesive formulations are capable of adhering to body tissues in moist environments, the use of a bioadhesive patch system may allow extension of the clinical uses of imiquimod to the treatment of neoplastic conditions of the oral cavity and cervix, as well as the vulva. © 2005 Elsevier B.V. All rights reserved.
Resumo:
opical administration of excess exogenous 5-aminolevulinic acid (ALA) leads to selective accumulation of the potent photosensitiser protoporphyrin IX (PpIX) in neoplastic cells, which can then be destroyed by irradiation with visible light. Due to its hydrophilicity, ALA penetrates deep lesions, such as nodular basal cell carcinomas (BCCs) poorly. As a result, more lipophilic esters of ALA have been employed to improve tissue penetration. In this study, the in vitro release of ALA and M-ALA from proprietary creams and novel patch-based systems across normal stratum corneum and a model membrane designed to mimic the abnormal stratum corneum overlying neoplastic skin lesions were investigated. Receiver compartment drug concentrations were compared with the concentrations of each drug producing high levels of PpIX production and subsequent light-induced kill in a model neoplastic cell line (LOX). LOX cells were found to be quite resistant to ALA- and M-ALA-induced phototoxicity. However, drug concentrations achieved in receiver compartments were comparable to those required to induce high levels of cell death upon irradiation in cell lines reported in the literature. Patches released significantly less drug across normal stratum corneum and significantly more across the model membrane. This is of major significance since the selectivity of PDT for neoplastic lesions will be further enhanced by the delivery system. ALA/M-ALA will only be delivered in significant amounts to the abnormal tissue. PpIX will only then accumulate in the neoplastic cells and the normal surrounding tissue will be unharmed upon irradiation.
Resumo:
Numerical and measured results are employed at X-band to demonstrate that the electrical properties ofnematic state liquid crystal can be exploited to produce phase shifters for beam scanning printed reflectarray antennas with a tunable range greater than 180'.