79 resultados para Economic benefits of sustainability
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
This article begins from the assumption (which may seem controversial to many) that anyone who thinks that our current economic crisis is a temporary blip until ‘normal service’ (i.e. a return to ‘business as usual’) is resumed, profoundly misunderstands the severity and significance of what’s happening to the global economy and its impacts on the future prosperity of the island of Ireland. The economic recession represents nothing short of a re-structuring of the global economy and the creation of a new dispensation between governments, markets and citizens. The full implications of the re-regulation of the market, with the state bailing out and part nationalising the financial sector in both jurisdictions on the island (as in other parts of the world) have yet to be seen, but what we are witnessing is the emergence of a new economic model. Those who think we can, or even ought to, return to the pre-2008 economic model, are gravely mistaken. The current economic downturn marks the end of the ‘neo-liberal’ model and the beginnings of the transition (an inevitable transition, this article will argue) towards a new low carbon, renewable, green and sustainable economy and society.
Resumo:
We develop and apply a valuation methodology to calculate the cost of sustainability capital, and, eventually, sustainable value creation of companies. Sustainable development posits that decisions must take into account all forms of capital rather than just economic capital. We develop a methodology that allows calculation of the costs that are associated with the use of different forms of capital. Our methodology borrows the idea from financial economics that the return on capital has to cover the cost of capital. Capital costs are determined as opportunity costs, that is, the forgone returns that would have been created by alternative investments. We apply and extend the logic of opportunity costs to the valuation not only of economic capital but also of other forms of capital. This allows (a) integrated analysis of use of different forms of capital based on a value-based aggregation of different forms of capital, (b) determination of the opportunity cost of a bundle of different forms of capital used in a company, called cost of sustainability capital, (c) calculation of sustainability efficiency of companies, and (d) calculation of sustainable value creation, that is, the value above the cost of sustainability capital. By expanding the well-established logic of the valuation of economic capital in financial markets to cover other forms of capital, we provide a methodology that allows determination of the most efficient allocation of sustainability capital for sustainable value creation in companies. We demonstrate the practicability of the methodology by the valuation of the sustainability performance of British Petroleum (BP).
Resumo:
Advances in stem cell science and tissue engineering are being turned into applications and products through a novel medical paradigm known as regenerative medicine. This paper begins by examining the vulnerabilities and risks encountered by the regenerative medicine industry during a pivotal moment in its scientific infancy: the 2000s. Under the auspices of New Labour, British medical scientists and life science innovation firms associated with regenerative medicine, received demonstrative rhetorical pledges of support, aligned with the publication of a number of government initiated reports presaged by Bioscience 2015: Improving National Health, Increasing National Wealth. The Department of Health and the Department of Trade and Industry (and its successors) held industry consultations to determine the best means by which innovative bioscience cultures might be promoted and sustained in Britain. Bioscience 2015 encapsulates the first chapter of this sustainability narrative. By 2009, the tone of this storyline had changed to one of survivability. In the second part of the paper, we explore the ministerial interpretation of the ‘bioscience discussion cycle’ that embodies this narrative of expectation, using a computer-aided content analysis programme. Our analysis notes that the ministerial interpretation of these reports has continued to place key emphasis upon the distinctive and exceptional characteristics of the life science industries, such as their ability to perpetuate innovations in regenerative medicine and the optimism this portends – even though many of the economic expectations associated with this industry have remained unfulfilled.
Resumo:
Transportation accounts for 22% of greenhouse gas emissions in the UK, and increases to 25% in Northern Ireland. Surface transport carbon dioxide emissions, consisting of road and rail, are dominated by cars. Demand for mobility is rising rapidly and vehicle numbers are expected to more than double by 2050. Car manufacturers are working towards reducing their carbon footprint through improving fuel efficiency and controlling exhaust emissions. Fuel efficiency is now a key consideration of consumers purchasing a new vehicle. While measures have been taken to help to reduce pollutants, in the future, alternative technologies will have to be used in the transportation industry to achieve sustainability. There are currently many alternatives to the market leader, the internal combustion engine. These alternatives include hydrogen fuel cell vehicles and electric vehicles, a term which is widely used to cover battery electric vehicles, plug-in hybrid electric vehicles and extended-range electric vehicles. This study draws direct comparisons measuring the differing performance in terms of fuel consumption, carbon emissions and range of a typical family saloon car using different fuel types. These comparisons will then be analysed to see what effect switching from a conventionally fuelled vehicle to a range extended electric vehicle would have not only on the end user, but also the UK government.
Resumo:
Objective Within the framework of a health technology assessment and using an economic model, to determine the most clinically and cost effective policy of scanning and screening for fetal abnormalities in early pregnancy. Design A discrete event simulation model of 50,000 singleton pregnancies. Setting Maternity services in Scotland. Population Women during the first 24 weeks of their pregnancy. Methods The mathematical model was populated with data on uptake of screening, prevalence, detection and false positive rates for eight fetal abnormalities and with costs for ultrasound scanning and serum screening. Inclusion of abnormalities was based on the relative prevalence and clinical importance of conditions and the availability of data. Six strategies for the identification of abnormalities prenatally including combinations of first and second trimester ultrasound scanning and first and second trimester screening for chromosomal abnormalities were compared. Main outcome measures The number of abnormalities detected and missed, the number of iatrogenic losses resulting from invasive tests, the total cost of strategies and the cost per abnormality detected were compared between strategies. Results First trimester screening for chromosomal abnormalities costs more than second trimester screening but results in fewer iatrogenic losses. Strategies which include a second trimester ultrasound scan result in more abnormalities being detected and have lower costs per anomaly detected. Conclusions The preferred strategy includes both first and second trimester ultrasound scans and a first trimester screening test for chromosomal abnormalities. It has been recommended that this policy is offered to all women in Scotland.