116 resultados para East Kingston

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diatom carbon export enhanced by silicate upwelling in the northeast Atlantic John T. Allen1,2, Louise Brown1,3, Richard Sanders1, C. Mark Moore1, Alexander Mustard1, Sophie Fielding1, Mike Lucas1, Michel Rixen4, Graham Savidge5, Stephanie Henson1 and Dan Mayor1 Top of pageDiatoms are unicellular or chain-forming phytoplankton that use silicon (Si) in cell wall construction. Their survival during periods of apparent nutrient exhaustion enhances carbon sequestration in frontal regions of the northern North Atlantic. These regions may therefore have a more important role in the 'biological pump' than they have previously been attributed1, but how this is achieved is unknown. Diatom growth depends on silicate availability, in addition to nitrate and phosphate2, 3, but northern Atlantic waters are richer in nitrate than silicate4. Following the spring stratification, diatoms are the first phytoplankton to bloom2, 5. Once silicate is exhausted, diatom blooms subside in a major export event6, 7. Here we show that, with nitrate still available for new production, the diatom bloom is prolonged where there is a periodic supply of new silicate: specifically, diatoms thrive by 'mining' deep-water silicate brought to the surface by an unstable ocean front. The mechanism we present here is not limited to silicate fertilization; similar mechanisms could support nitrate-, phosphate- or iron-limited frontal regions in oceans elsewhere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A full understanding of the biogeochemical cycling of silica in the North Atlantic is hampered by a lack of estimates of silica uptake by phytoplankton. We applied the ${}^{32}\text{Si}$ radiotracer incubation technique to determine silica uptake rates at 10 sites during the UK-(Natural Environment Research Council) Faroes-Iceland-Scotland hydrographic and environmental survey (FISHES) cruise in the Northeast Atlantic, May 2001. Column silica uptake rates ranged between 6 and 166 mmol Si $\text{m}^{-2}\ \text{d}^{-1}$; this data set was integrated with concurrent hydrographic, chemical, and primary productivity data to explain these changes in silica uptake in terms of the progress of the spring bloom. In order to interpret data covering a relatively large spatial and temporal scale, we used mean photic zone silica concentration as a proxy time-series measure of diatom bloom progression. Both absolute and specific silica uptake rates were highest at dissolved silica concentrations >2 mmol $\text{L}^{-1}$. Si and C uptake were vertically decoupled at those stations where surface silica was strongly depleted. Absolute primary productivity was not strongly correlated with dissolved silica concentrations, owing to either exhaustion of silica at diatom-dominated stations or to dominance of the community by other phytoplankton. Silica uptake as a function of increased substrate concentration was linear up to 25 $\mu \text{mol}\ \text{L}^{-1}$; we consider some possible reasons for the nonhyperbolic response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two depositional models to account for Holocene gravel-dominated beach ridges covered by dunes, occurring on the northern coast of Ireland, are considered in the light of infrared-stimulated luminescence ages of sand units within beach ridges, and 14C ages from organic horizons in dunes. A new chronostratigraphy obtained from prograded beach ridges with covering dunes at Murlough, north-east Ireland, supports a model of mesoscale alternating sediment decoupling (ASD) on the upper beach, rather than macroscale sequential sediment sourcing to account for prograded beach ridges and covering dunes. The ASD model specifies storm or fair-weather sand beach ridges forming at high-tide positions (on an annual basis at minimum), which acted as deflationary sources for landward foredune development. Only a limited number of such late-Holocene beach ridges survive in the observed prograded series. Beach ridges only survive when capped by storm-generated gravel beaches that are deposited on a mesoscale time spacing of 50–130 years. The morphodynamic shift from a dissipative beach face for dune formation to a reflective beach face for gravel capping appears to be controlled by the beach sand volume falling to a level where reflective conditions can prevail. Sediment volume entering the beach is thought to have fluctuated as a function of a forced regression associated with the falling sea level from the mid-Holocene highstand (ca. 6000 cal. yr BP) identified in north-east Ireland. The prograded beach ridges dated at ca. 3000 to 2000 cal. yr BP indicate that the Holocene highstand’s regressive phase may have lasted longer than previously specified.