17 resultados para EXTREME CLIMATIC EVENTS

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our review of paleoclimate information for New Zealand pertaining to the past 30,000 years has identified a general sequence of climatic events, spanning the onset of cold conditions marking the final phase of the Last Glaciation, through to the emergence to full interglacial conditions in the early Holocene. In order to facilitate more detailed assessments of climate variability and any leads or lags in the timing of climate changes across the region, a composite stratotype is proposed for New Zealand. The stratotype is based on terrestrial stratigraphic records and is intended to provide a standard reference for the intercomparison and evaluation of climate proxy records. We nominate a specific stratigraphic type record for each climatic event, using either natural exposure or drill core stratigraphic sections. Type records were selected on thebasis of having very good numerical age control and a clear proxy record. In all cases the main proxy of the type record is subfossil pollen. The type record for the period from ca 30 to ca 18 calendar kiloyears BP (cal. ka BP) is designated in lake-bed sediments from a small morainic kettle lake (Galway tarn) in western South Island. The Galway tarn type record spans a period of full glacial conditions (Last Glacial Coldest Period, LGCP) within the Otira Glaciation, and includes three cold stadials separated by two cool interstadials. The type record for the emergence from glacial conditions following the termination of the Last Glaciation (post-Termination amelioration) is in a core of lake sediments from a maar (Pukaki volcanic crater) in Auckland, northern North Island, and spans from ca 18 to 15.64±0.41 cal. ka BP. The type record for the Lateglacial period is an exposure of interbedded peat and mud at montane Kaipo bog, eastern North Island. In this high-resolution type record, an initial mild period was succeeded at 13.74±0.13 cal. ka BP by a cooler period, which after 12.55±0.14 cal. ka BP gave way to a progressive ascent to full interglacial conditions that were achieved by 11.88±0.18 cal. ka BP. Although a type section is not formally designated for the Holocene Interglacial (11.88±0.18 cal. ka BP to the present day), the sedimentary record of Lake Maratoto on the Waikato lowlands, northwestern North Island, is identified as a prospective type section pending the integration and updating of existing stratigraphic and proxy datasets, and age models. The type records are interconnected by one or more dated tephra layers, the ages of which are derived from Bayesian depositional modelling and OxCal-based calibrations using the IntCal09 dataset. Along with the type sections and the Lake Maratoto record, important, well-dated terrestrial reference records are provided for each climate event. Climate proxies from these reference records include pollen flora, stable isotopes from speleothems, beetle and chironomid fauna, and glacier moraines. The regional composite stratotype provides a benchmark against which to compare other records and proxies. Based on the composite stratotype, we provide an updated climate event stratigraphic classification for the New Zealand region. © 2013 Elsevier Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes the result of a project to develop climate adaptation design strategies funded by the UK’s Technology Strategy Board. The aim of the project was to look at the effects of climate change in the distant future (2080) on a vulnerable group such as older people with special needs and see how architectural design strategies and technologies may be used today to help mitigate problems ahead caused by climate change.
Older people are the most vulnerable sector of society and are particularly at risk in extreme weather, either excess cold in winter or continual high temperatures in summer. In the UK it is predicted that average temperatures may rise by as much as 8 degrees in Summer by 2080 and there will be a 20% greater chance of extreme weather events. This will place extreme stress on the building stock which is designed for today’s mild maritime climate.
The project took a current proposal for an extra-care home for the elderly designed to 2010 regulations and developed a road map to 2080 using climate models developed by the UK Meteorological Office. This allowed the current design to be assessed using future climatic data, proposals for improvement of the scheme to be made within existing constraints and also a new scheme to be developed from first principals using this data, and projections of new technologies that will be available. By comparing these schemes, the approach allowed a reassessment of the initial scheme, and allowed a new design to be developed that offered a more flexible solution incorporating future retrofit which allows new renewable technologies for heating, cooling and water storage to be added at a later date.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is predicted that climate change will result in rising sea levels, more frequent and extreme weather events, hotter and drier summers and warmer and wetter winters. This will have a significant impact on the design of buildings, how they are kept cool and how they are weathered against more extreme climatic conditions. The residential sector is already a significant environmental burden with high associated operational energy. Climate change, and a growing population requiring residence, has the potential to exacerbate this problem seriously. New paradigms for residential building design are required to enable low-carbon dioxide operation to mitigate climate change. They must also face the reality of inevitable climate change and adopt climate change adaptation strategies to cope with future scenarios. However, any climate adaptation strategy for dwellings must also be cognisant of adapting occupant needs, influenced by ageing populations and new technologies. This paper presents concepts and priorities for changing how society designs residential buildings by designing for adaptation. A case study home is analysed in the context of its stated aims of low energy and adaptability. A post-occupancy evaluation of the house is presented, and future-proofing strategies are evaluated using climate projection data for future climate change scenarios.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Identifying 20th-century periodic coastal surge variation is strategic for the 21st-century coastal surge estimates, as surge periodicities may amplify/reduce future MSL enhanced surge forecasts. Extreme coastal surge data from Belfast Harbour (UK) tide gauges are available for 1901–2010 and provide the potential for decadal-plus periodic coastal surge analysis. Annual extreme surge-elevation distributions (sampled every 10-min) are analysed using PCA and cluster analysis to decompose variation within- and between-years to assess similarity of years in terms of Surge Climate Types, and to establish significance of any transitions in Type occurrence over time using non-parametric Markov analysis. Annual extreme surge variation is shown to be periodically organised across the 20th century. Extreme surge magnitude and distribution show a number of significant cyclonic induced multi-annual (2, 3, 5 & 6 years) cycles, as well as dominant multi-decadal (15–25 years) cycles of variation superimposed on an 80 year fluctuation in atmospheric–oceanic variation across the North Atlantic (relative to NAO/AMO interaction). The top 30 extreme surge events show some relationship with NAO per se, given that 80% are associated with westerly dominant atmospheric flows (+ NAO), but there are 20% of the events associated with blocking air massess (− NAO). Although 20% of the top 30 ranked positive surges occurred within the last twenty years, there is no unequivocal evidence of recent acceleration in extreme surge magnitude related to other than the scale of natural periodic variation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The monitoring of temperature and moisture changes in response to different micro-environment of building stones is essential to understand the material behaviour and the degradation mechanisms. From a practical point of view, having a continuous and detailed understanding of micro-environmental changes in building stones helps to assist in their maintenance and repair strategies. Temperature within the stone is usually monitored by means of thermistors, whereas wide ranges of techniques are available for monitoring the moisture. In the case of concrete an electrical resistance method has previously been used as an inexpensive tool for monitoring moisture changes. This paper describes the adaptation of this technique and describes its further development for monitoring moisture movement in building stones.
In this study a block of limestone was subjected to intermittent infrared radiation with programmed cycles of ambient temperature, rainfall and wind conditions in an automated climatic chamber. The temperature and moisture changes at different depths within the stone were monitored by means of bead thermistors and electrical resistance sensors. This experiment has helped to understand the thermal conductivity and moisture transport from surface into deeper parts of the stone at different simulated extreme climatic conditions. Results indicated that variations in external ambient conditions could substantially affect the moisture transport and temperature profile within the micro-environment of building stones and hence they could have a significant impact on stone decay.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As a consequence of climate change there is now a more frequent occurrence of extreme rainfall events where, with higher rates of urbanisation, the built environment has become increasingly affected by flooding.. This is of particular importance in relation to the stability of bridge structures that span rivers and canals etc. In November 2009, the UK and Ireland were subjected to extraordinarily severe weather conditions for several days. The rainfall was logged as the highest level of rainfall ever recorded within the UK, and as a direct consequence, unprecedented flooding occurred in Cumbria. This flooding led to the collapse of three road bridges which were generally 19th century masonry arch bridges, with relatively shallow foundations. In the UK, knowledge of the combined effect of bridge scouring and inundation has been not been particularly widely studied. Research carried out by Hamill et al [1] considered the hydraulic analysis of single arch bridges under flood conditions, but no consideration was given towards the likely damage to these structures due to scouring. Prior to this, Bierry and Delleur [2] produced a classic paper in predicting the discharge downstream of an inundated arch, focussing on predicting afflux as opposed to bridge scour. Further work on backwater effects was carried out by Martin-Vide & Prio [3] in semi-circular arch bridges. Both pressurized and free-surface flows at the bridge were investigated. Flows on a mobile bed in clear-water conditions were compared to those with a rigid bed, but no predictive equation for scour under pressurised conditions was considered. This paper will present initial findings from an experimental investigation into the effects of surcharged flow and subsequent scour within the vicinity of single span arch bridges. Velocities profiles will be shown within the vicinity of the arch, in addition to the depth of clear water scour, for a series of flows and model spans. The data will be presented, where results will be correlated to the most recent predictive equations that are proposed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many parts of the UK’s rail network were constructed in the mid-19th century long before the advent of modern construction standards. Historic levels of low investment, poor maintenance strategies and the deleterious effects of climate change have resulted in critical elements of the rail network being at significant risk of failure. The majority of failures which have occurred over recent years have been triggered by extreme weather events. Advance assessment and remediation of earthworks is, however, significantly less costly than dealing with failures reactively. It is therefore crucial that appropriate approaches for assessment of the stability of earthworks are developed, so that repair work can be better targeted and failures avoided wherever possible. This extended abstract briefly discusses some preliminary results from an ongoing geophysical research project being carried out in order to study the impact of climate or seasonal weather variations on the stability of a century old railway embankment on the Gloucestershire Warwickshire steam railway line in Southern England.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As a consequence of increased levels of flooding, largely attributable to urbanization of watersheds (and perhaps climate change, more frequent extreme rainfall events are occurring and threatening existing critical infrastructure. Many of which are short-span bridges over relatively small waterways (e.g., small rivers, streams and canals). Whilst these short-span bridges were designed, often many years ago, to pass relatively minor the then standard return-period floods, in recenttimes the failure incidence of such short-span bridges has been noticeably increasing. This is suggestive of insufficient hydraulic capacity or alternative failure mechanism not envisaged at the time of design e.g. foundation scour or undermining. This paper presen ts, and draws lessons, from bridge failures in Ireland and the USA. For example, in November 2009, the UK and Ireland were subjected to extraordinarily severe weather conditions for several days. The resulting flooding led to the collapse of three UK bridges that were generally 19th century masonry arch bridges, withrelatively shallow foundations. Parallel failure events have been observed in the USA. To date, knowledge of the combined effect of waterway erosion, bridge submergence, and geotechnical collapse has not been adequately studied. Recent research carried out considered the hydraulic analysis of short span bridges under flood conditions, but no consideration was given towards the likely damage to these structures due to erosive coupling of hydraulic and geotechnical factors. Some work has been done to predict the discharge downstream of an inundated arch, focusing onpredicting afflux, as opposed to bridge scour, under both pressurized and free-surface flows, but no ! predictive equation for scour under pressurized conditions was ever considered. The case studies this paper presents will be augmented by the initial findings from the laboratory experiments investigating the effects of surcharged flow and subsequent scour within the vicinity of single span arch bridges. Velocities profiles will be shown within the vicinity of the arch, in addition to the depth of consequent scour, for a series of flows and model spans. The data will be presented and correlated to the most recent predictive equations for submerged contraction and abutment scour. The accuracy of these equations is examined, and the findings used as a basis for developing further studies in relation to short span bridges.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is thought that direct personal experience of extreme weather events could result in greater public engagement and policy response to climate change. Based on this premise, we present a set of future climate scenarios for Ireland communicated in the context of recent, observed extremes. Specifically, we examine the changing likelihood of extreme seasonal conditions in the long-term observational record, and explore how frequently such extremes might occur in a changed Irish climate according to the latest model projections. Over the period (1900-2014) records suggest a greater than 50-fold increase in the likelihood of the warmest recorded summer (1995), whilst the likelihood of the wettest winter (1994/95) and driest summer (1995) has respectively doubled since 1850. The most severe end-of-century climate model projections suggest that summers as cool as 1995 may only occur once every ∼7 years, whilst winters as wet as 1994/95 and summers as dry as 1995 may increase by factors of ∼8 and ∼10 respectively. Contrary to previous research, we find no evidence for increased wintertime storminess as the Irish climate warms, but caution that this conclusion may be an artefact of the metric employed. It is hoped that framing future climate scenarios in the context of extremes from living memory will help communicate the scale of the challenge climate change presents, and in so doing bridge the gap between climate scientists and wider society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cuttings in heavily overconsolidated clays are known to be susceptible to progressive deformation caused by creep and fatigue that usually begins at the toe of the slope. The progressive deformation leads to strength reduction with time at constant stress (or called softening) and could be accelerated by fluctuation of groundwater level associated with more extreme rainfall events predicted through climate change. The purpose of this paper is to assess the mechanism of progressive deformation due to creep and fatigue using element testing on samples of till. The samples were subjected to fully drained loading and the deviator stresses were held constant at various percentages of peak failure stress, while the pore water pressure was kept static or dynamic (fluctuating ±5 kPa) over a period of time. The results have shown that the samples experienced significant deformation even at a higher factor of safety (i.e. the failure deviator stress/deviator stress at which the pore water pressure was fluctuated) under pore water pressure dynamics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the first multi vector energy analysis for the interconnected energy systems of Great Britain (GB) and Ireland. Both systems share a common high penetration of wind power, but significantly different security of supply outlooks. Ireland is heavily dependent on gas imports from GB, giving significance to the interconnected aspect of the methodology in addition to the gas and power interactions analysed. A fully realistic unit commitment and economic dispatch model coupled to an energy flow model of the gas supply network is developed. Extreme weather events driving increased domestic gas demand and low wind power output were utilised to increase gas supply network stress. Decreased wind profiles had a larger impact on system security than high domestic gas demand. However, the GB energy system was resilient during high demand periods but gas network stress limited the ramping capability of localised generating units. Additionally, gas system entry node congestion in the Irish system was shown to deliver a 40% increase in short run costs for generators. Gas storage was shown to reduce the impact of high demand driven congestion delivering a reduction in total generation costs of 14% in the period studied and reducing electricity imports from GB, significantly contributing to security of supply.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The long-term morphodynamic ordering of gravel-dominated coastal systems (GDCS), many of which serve as coastal defences in northwest Europe, is dominated by extreme events that generate barrier crest overflow. An understanding of this morphodynamic ordering is fraught with several unresolved difficulties. These are related to the twin problems of the inadequacy of pertinent morphodynamic parameterisation and of obtaining data from modern shores enabling such parameterisation. Major uncertainties concern the timing of over-crest flow in terms of return period of extreme elevation; the intensity and structure of the overflow field; antecedent beachface characteristics in response to storms; the rate of relative sea-level change; tidal stage control; and barrier resistance to forcing, itself determined by a number of unknowns including barrier form and size, sediment size and mosaics, and barrier resilience. While generalised extreme value modelling may provide a means of characterising overwashing return-period and its variability, exceptional tsunami events are outside the scope of such modelling. The characterisation of GDCS morphodynamics in terms of the forcing extreme events will necessitate integrating some or all of these parameters into a single model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Data on rock temperatures has previously been collected to characterise typical diurnal regimes, and more recently to describe short-term variability in extreme locations. However, there is also the case that little is understood concerning the impact of extreme events in otherwise temperate environments. Internal stone temperatures (5?cm) collected during the atypical cold extreme experienced, throughout the UK, in December 2010 show a difference between ambient air temperatures and aspect-related thermal differences, particularly concerning temperature lows and the influence of radiative heating. In this case, debris release was not visible; however, laboratory simulations have shown that under such conditions, surface loss does not necessarily negate the occurrence of internal stone modifications. This preparatory sequence of change demonstrates that surface loss is not the result of one process, but rather many operating over time to sufficiently decrease stone strength to facilitate obvious damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A goal of phylogeography is to relate patterns of genetic differentiation to potential historical geographic isolating events. Quaternary glaciations, particularly the one culminating in the Last Glacial Maximum ~21 ka (thousands of years ago), greatly affected the distributions and population sizes of temperate marine species as their ranges retreated southward to escape ice sheets. Traditional genetic models of glacial refugia and routes of recolonization include these predictions: low genetic diversity in formerly glaciated areas, with a small number of alleles/haplotypes dominating disproportionately large areas, and high diversity including "private" alleles in glacial refugia. In the Northern Hemisphere, low diversity in the north and high diversity in the south are expected. This simple model does not account for the possibility of populations surviving in relatively small northern periglacial refugia. If these periglacial populations experienced extreme bottlenecks, they could have the low genetic diversity expected in recolonized areas with no refugia, but should have more endemic diversity (private alleles) than recently recolonized areas. This review examines evidence of putative glacial refugia for eight benthic marine taxa in the temperate North Atlantic. All data sets were reanalyzed to allow direct comparisons between geographic patterns of genetic diversity and distribution of particular clades and haplotypes including private alleles. We contend that for marine organisms the genetic signatures of northern periglacial and southern refugia can be distinguished from one another. There is evidence for several periglacial refugia in northern latitudes, giving credence to recent climatic reconstructions with less extensive glaciation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Volatiles erupted from large-scale explosive volcanic activities have a significant impact on climate and environmental changes. As an important ecological factor, the occurrence of fire is affected by vegetation cover, and fire can feed back into both vegetation and climatic change. The causes of fire events are diverse; and can include volcanic eruptions. The amount of charcoal in sediment sequences is related to the frequency and intensity of fire, and hence under good preservation conditions fire history can be reconstructed from fossil charcoal abundance. Until now, little research on the role of fire has been carried out in northeastern China. In this study, through research on charcoal and tephra shards from Gushantun and Hanlongwan, Holocene vegetation change in relation to fire and volcanic events in Jilin, Northeastern China, was investigated. Where tephra shards are present in Gushantun it is associated with low level of both conifers and broadleaved trees, and is also associated with a pronounced charcoal peak. This suggests forest cover was greatly reduced from a fire caused by an eruption of the Tianchi volcano. We also detected one tephra layer in Hanlongwan, which also has the almost same depth with low level forest pollen values and one charcoal peak. This was caused probably by an eruption of the Jinlongdingzi volcano.