7 resultados para Dynamic storage deficit
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The silicone elastomer solubilities of a range of drugs and pharmaceutical excipients employed in the development of silicone intravaginal drug delivery rings (polyethylene glycols, norethisterone acetate, estradiol, triclosan, oleyl alcohol, oxybutynin) have been determined using dynamic mechanical analysis. The method involves measuring the concentration-dependent decrease in the storage modulus associated with the melting of the incorporated drug/excipient, and extrapolation to zero change in storage modulus. The study also demonstrates the effect of drug/excipient concentrations on the mechanical stiffness of the silicone devices at 37°C.
Resumo:
Dynamic mechanical analysis (DMA) is an analytical technique in which an oscillating stress is applied to a sample and the resultant strain measured as functions of both oscillatory frequency and temperature. From this, a comprehensive knowledge of the relationships between the various viscoelastic parameters, e.g. storage and loss moduli, mechanical damping parameter (tan delta), dynamic viscosity, and temperature may be obtained. An introduction to the theory of DMA and pharmaceutical and biomedical examples of the use of this technique are presented in this concise review. In particular, examples are described in which DMA has been employed to quantify the storage and loss moduli of polymers, polymer damping properties, glass transition temperature(s), rate and extent of curing of polymer systems, polymer-polymer compatibility and identification of sol-gel transitions. Furthermore, future applications of the technique for the optimisation of the formulation of pharmaceutical and biomedical systems are discussed. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Although pumped hydro storage is seen as a strategic key asset by grid operators, financing it is complicated in new liberalised markets. It could be argued that the optimum generation portfolio is now determined by the economic viability of generators based on a short to medium term return on investment. This has meant that capital intensive projects such as pumped hydro storage are less attractive for wholesale electricity companies because the payback periods are too long. In tandem a significant amount of wind power has entered the generation mix, which has resulted in operating and planning integration issues due to wind's inherent uncertain, varying spatial and temporal nature. These integration issues can be overcome using fast acting gas peaking plant or energy storage. Most analysis of wind power integration using storage to date has used stochastic optimisation for power system balancing or arbitrage modelling to examine techno-economic viability. In this research a deterministic dynamic programming long term generation expansion model is employed to optimise the generation mix, total system costs and total carbon dioxide emissions, and unlike other studies calculates reserve to firm wind power. The key finding of this study is that the incentive to build capital-intensive pumped hydro storage to firm wind power is limited unless exogenous market costs come very strongly into play. Furthermore it was demonstrated that reserve increases with increasing wind power showing the importance of ancillary services in future power systems. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
The proliferation of mobile devices in society accessing data via the ‘cloud’ is imposing a dramatic increase in the amount of information to be stored on hard disk drives (HDD) used in servers. Forecasts are that areal densities will need to increase by as much as 35% compound per annum and by 2020 cloud storage capacity will be around 7 zettabytes corresponding to areal densities of 2 Tb/in2. This requires increased performance from the magnetic pole of the electromagnetic writer in the read/write head in the HDD. Current state-of-art writing is undertaken by morphologically complex magnetic pole of sub 100 nm dimensions, in an environment of engineered magnetic shields and it needs to deliver strong directional magnetic field to areas on the recording media around 50 nm x 13 nm. This points to the need for a method to perform direct quantitative measurements of the magnetic field generated by the write pole at the nanometer scale. Here we report on the complete in situ quantitative mapping of the magnetic field generated by a functioning write pole in operation using electron holography. Opportunistically, it points the way towards a new nanoscale magnetic field source to further develop in situ Transmission Electron Microscopy.
Resumo:
Motivated by the need for designing efficient and robust fully-distributed computation in highly dynamic networks such as Peer-to-Peer (P2P) networks, we study distributed protocols for constructing and maintaining dynamic network topologies with good expansion properties. Our goal is to maintain a sparse (bounded degree) expander topology despite heavy {\em churn} (i.e., nodes joining and leaving the network continuously over time). We assume that the churn is controlled by an adversary that has complete knowledge and control of what nodes join and leave and at what time and has unlimited computational power, but is oblivious to the random choices made by the algorithm. Our main contribution is a randomized distributed protocol that guarantees with high probability the maintenance of a {\em constant} degree graph with {\em high expansion} even under {\em continuous high adversarial} churn. Our protocol can tolerate a churn rate of up to $O(n/\poly\log(n))$ per round (where $n$ is the stable network size). Our protocol is efficient, lightweight, and scalable, and it incurs only $O(\poly\log(n))$ overhead for topology maintenance: only polylogarithmic (in $n$) bits needs to be processed and sent by each node per round and any node's computation cost per round is also polylogarithmic. The given protocol is a fundamental ingredient that is needed for the design of efficient fully-distributed algorithms for solving fundamental distributed computing problems such as agreement, leader election, search, and storage in highly dynamic P2P networks and enables fast and scalable algorithms for these problems that can tolerate a large amount of churn.
Resumo:
Future power systems are expected to integrate large-scale stochastic and intermittent generation and load due to reduced use of fossil fuel resources, including renewable energy sources (RES) and electric vehicles (EV). Inclusion of such resources poses challenges for the dynamic stability of synchronous transmission and distribution networks, not least in terms of generation where system inertia may not be wholly governed by large-scale generation but displaced by small-scale and localised generation. Energy storage systems (ESS) can limit the impact of dispersed and distributed generation by offering supporting reserve while accommodating large-scale EV connection; the latter (load) also participating in storage provision. In this paper, a local energy storage system (LESS) is proposed. The structure, requirement and optimal sizing of the LESS are discussed. Three operating modes are detailed, including: 1) storage pack management; 2) normal operation; and 3) contingency operation. The proposed LESS scheme is evaluated using simulation studies based on data obtained from the Northern Ireland regional and residential network.
Resumo:
Development of reliable methods for optimised energy storage and generation is one of the most imminent challenges in modern power systems. In this paper an adaptive approach to load leveling problem using novel dynamic models based on the Volterra integral equations of the first kind with piecewise continuous kernels. These integral equations efficiently solve such inverse problem taking into account both the time dependent efficiencies and the availability of generation/storage of each energy storage technology. In this analysis a direct numerical method is employed to find the least-cost dispatch of available storages. The proposed collocation type numerical method has second order accuracy and enjoys self-regularization properties, which is associated with confidence levels of system demand. This adaptive approach is suitable for energy storage optimisation in real time. The efficiency of the proposed methodology is demonstrated on the Single Electricity Market of Republic of Ireland and Northern Ireland.