13 resultados para Dynamic signal
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
This paper investigates the characteristics of the complex received signal in body area networks for two environments at the opposite ends of the multipath spectrum at 2.45 GHz. Important attributes of the complex channel such as the Gaussianity of the quadrature components and power imbalance, which form the basis of many popular fading models, are investigated. It is found that in anechoic environments the assumption of Gaussian distributed quadrature components will not always yield a satisfactory fit. Using a complex received signal model which considers a non-isotropic scattered signal contribution along with the presence of an optional dominant signal component, we use an autocorrelation function originally derived for mobile-to-mobile communications to model the temporal behavior of a range of dynamic body area network channels with considerable success. In reverberant environments, it was observed that the real part of the complex autocorrelation function for body area network channels decayed slightly quicker than that expected in traditional land mobile channels. © 2013 IEEE.
Resumo:
A power and resource efficient ‘dynamic-range utilisation’ technique to increase operational capacity of DSP IP cores by exploiting redundancy in the data epresentation of sampled analogue input data, is presented. By cleverly partitioning dynamic-range into separable processing threads, several data streams are computed concurrently on the same hardware. Unlike existing techniques which act solely to reduce power consumption due to sign extension, here the dynamic range is exploited to increase operational capacity while still achieving reduced power consumption. This extends an existing system-level, power efficient framework for the design of low power DSP IP cores, which when applied to the design of an FFT IP core in a digital receiver system gives an architecture requiring 50% fewer multipliers, 12% fewer slices and 51%-56% less power.
Resumo:
Dynamic power consumption is very dependent on interconnect, so clever mapping of digital signal processing algorithms to parallelised realisations with data locality is vital. This is a particular problem for fast algorithm implementations where typically, designers will have sacrificed circuit structure for efficiency in software implementation. This study outlines an approach for reducing the dynamic power consumption of a class of fast algorithms by minimising the index space separation; this allows the generation of field programmable gate array (FPGA) implementations with reduced power consumption. It is shown how a 50% reduction in relative index space separation results in a measured power gain of 36 and 37% over a Cooley-Tukey Fast Fourier Transform (FFT)-based solution for both actual power measurements for a Xilinx Virtex-II FPGA implementation and circuit measurements for a Xilinx Virtex-5 implementation. The authors show the generality of the approach by applying it to a number of other fast algorithms namely the discrete cosine, the discrete Hartley and the Walsh-Hadamard transforms.
Resumo:
This paper introduces a novel channel inversion (CI) precoding scheme for the downlink of phase shift keying (PSK)-based multiple input multiple output (MIMO) systems. In contrast to common practice where knowledge of the interference is used to eliminate it, the main idea proposed here is to use this knowledge to glean benefit from the interference. It will be shown that the system performance can be enhanced by exploiting some of the existent inter-channel interference (ICI). This is achieved by applying partial channel inversion such that the constructive part of ICI is preserved and exploited while the destructive part is eliminated by means of CI precoding. By doing so, the effective signal to interference-plus-noise ratio (SINR) delivered to the mobile unit (MU) receivers is enhanced without the need to invest additional transmitted signal power at the MIMO base station (BS). It is shown that the trade-off to this benefit is a minor increase in the complexity of the BS processing. The presented theoretical analysis and simulations demonstrate that due to the SINR enhancement, significant performance and throughput gains are offered by the proposed MIMO precoding technique compared to its conventional counterparts.
Resumo:
The stars 51 Pegasi and tau Bootis show radial velocity variations that have been interpreted as resulting from companions with roughly Jovian mass and orbital periods of a few days. Gray and Gray & Hatzes reported that the radial velocity signal of 51 Peg is synchronous with variations in the shape of the line lambda 6253 Fe I; thus, they argue that the velocity signal arises not from a companion of planetary mass but from dynamic processes in the atmosphere of the star, possibly nonradial pulsations. Here we seek confirming evidence for line shape or strength variations in both 51 Peg and tau Boo, using R = 50,000 observations taken with the Advanced Fiber Optic Echelle. Because of our relatively low spectral resolution, we compare our observations with Gray's line bisector data by fitting observed line profiles to an expansion in terms of orthogonal (Hermite) functions. To obtain an accurate comparison, we model the emergent line profiles from rotating and pulsating stars, taking the instrumental point-spread function into account. We describe this modeling process in detail. We find no evidence for line profile or strength variations at the radial velocity period in either 51 Peg or in tau Boo. For 51 Peg, our upper limit for line shape variations with 4.23 day periodicity is small enough to exclude with 10 sigma confidence the bisector curvature signal reported by Gray & Hatzes; the bisector span and relative line depth signals reported by Gray are also not seen, but in this case with marginal (2 sigma ) confidence. We cannot, however, exclude pulsations as the source of 51 Peg's radial velocity variation because our models imply that line shape variations associated with pulsations should be much smaller than those computed by Gray & Hatzes; these smaller signals are below the detection limits both for Gray & Hatzes's data and for our own. tau Boo's large radial velocity amplitude and v sin i make it easier to test for pulsations in this star. Again we find no evidence for periodic line shape changes, at a level that rules out pulsations as the source of the radial velocity variability. We conclude that the planet hypothesis remains the most likely explanation for the existing data.
Resumo:
Melt viscosity is a key indicator of product quality in polymer extrusion processes. However, real time monitoring and control of viscosity is difficult to achieve. In this article, a novel “soft sensor” approach based on dynamic gray-box modeling is proposed. The soft sensor involves a nonlinear finite impulse response model with adaptable linear parameters for real-time prediction of the melt viscosity based on the process inputs; the model output is then used as an input of a model with a simple-fixed structure to predict the barrel pressure which can be measured online. Finally, the predicted pressure is compared to the measured value and the corresponding error is used as a feedback signal to correct the viscosity estimate. This novel feedback structure enables the online adaptability of the viscosity model in response to modeling errors and disturbances, hence producing a reliable viscosity estimate. The experimental results on different material/die/extruder confirm the effectiveness of the proposed “soft sensor” method based on dynamic gray-box modeling for real-time monitoring and control of polymer extrusion processes. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers
Resumo:
Measurement of the dynamic properties of hydrogen and helium under extreme pressures is a key to understanding the physics of planetary interiors. The inelastic scattering signal from statically compressed hydrogen inside diamond anvil cells at 2.8 GPa and 6.4 GPa was measured at the Diamond Light Source synchrotron facility in the UK. The first direct measurement of the local field correction to the Coulomb interactions in degenerate plasmas was obtained from spectral shifts in the scattering data and compared to predictions by the Utsumi-Ichimaru theory for degenerate electron liquids.
Resumo:
Laughter is a ubiquitous social signal in human interactions yet it remains understudied from a scientific point of view. The need to understand laughter and its role in human interactions has become more pressing as the ability to create conversational agents capable of interacting with humans has come closer to a reality. This paper reports on three aspects of the human perception of laughter when context has been removed and only the body information from the laughter episode remains. We report on ability to categorise the laugh type and the sex of the laugher; the relationship between personality factors with laughter categorisation and perception; and finally the importance of intensity in the perception and categorisation of laughter.
Resumo:
Mutual variation of the received signal which occurs as a consequence of the channel reciprocity property has recently been proposed as a viable method for secret key generation. However, this cannot be strictly maintained in practice as the property is applicable only in the absence of interference. To ensure the propagation defined key remains secret, one requirement is that there remain high degrees of uncertainty between the legitimate users channel response and that of any eavesdropper's. In this paper, we investigate whether such de-correlation occurs for an indoor point-to-point link at 2.45 GHz. This is achieved by computing the localized correlation coefficient between the simultaneous channel response measured by the legitimate users and that of multiple distributed eavesdroppers for static and dynamic scenarios.
Resumo:
In this paper, the level of dynamics, as described by the Assessment Dynamic Ratio (ADR), is measured directly through a field test on a bridge in the United Kingdom. The bridge was instrumented using fiber optic strain sensors and piezo-polymer weigh-in-motion sensors were installed in the pavement on the approach road. Field measurements of static and static-plus-dynamic strains were taken over 45 days. The results show that, while dynamic amplification is large for many loading events, these tend not to be the critical events. ADR, the allowance that should be made for dynamics in an assessment of safety, is small.