22 resultados para Drosophila mulleri
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The microsporidian parasite, Pleistophora mulleri, infects the abdominal muscle of the freshwater amphipod Gammarus duebeni celticus. We recently showed that P. mulleri infection was associated with G. d. celticus hosts being more vulnerable to predation by the invasive amphipod Gammarus pulex. Parasitized G. d. celticus also had a reduced ability to prey upon other co-occurring amphipods. We suggested the parasite may have pervasive influences on host ecology and behaviour. Here, we examine the association between P. mulleri parasitism and parameters influencing individual host fitness, behaviour and interspecific interactions. We also investigate the relationship between parasite prevalence and host population structure in the field. In our G. d. celticus study population, P. mulleri prevalence was strongly seasonal, ranging from 8.5% in summer to 44.9% in winter. The relative abundance of hosts with the heaviest parasite burden increased during summer, which coincided with high host mortality, suggesting that parasitism may regulate host abundance to some degree. Females were more likely to be parasitized than males and parasitized males were paired with smaller females than unparasitized males. Parasitism was associated with reduction in the host's activity level and reduced both its predation on the isopod Asellus aquaticus and aggression towards precopula pairs of the invasive G. pulex. We discuss the pervasive influence of this parasite on the ecology of its host.
Resumo:
The classification of a microsporidian parasite observed in the abdominal muscles of amphipod hosts has been repeatedly revised but still remains inconclusive. This parasite has variable spore numbers within a sporophorous vesicle and has been assigned to the genera Glugea, Pleistophora, Stempellia, and Thelohania. We used electron microscopy and molecular evidence to resolve the previous taxonomic confusion and confirm its identification as Pleistophora mulleri. The life cycle of P. mulleri is described from the freshwater amphipod host Gammarus duebeni celticus. Infection appeared as white tubular masses within the abdominal muscle of the host. Light and transmission electron microscope examination revealed the presence of an active microsporidian infection that was diffuse within the muscle block with no evidence of xenoma formation. Paucinucleate merogonial plasmodia were surrounded by an amorphous coat immediately external to the plasmalemma. The amorphous coat developed into a merontogenetic sporophorous vesicle that was present throughout sporulation. Sporogony was polysporous resulting in uninucleate spores, with a bipartite polaroplast, an anisofilar polar filament and a large posterior vacuole. SSU rDNA analysis supported the ultrastructural evidence clearly placing this parasite within the genus Pleistophora. This paper indicates that Pleistophora species are not restricted to vertebrate hosts.
Resumo:
With field, laboratory, and modeling approaches, we examined the interplay among habitat structure, intraguild predation (IGP), and parasitism in an ongoing species invasion. Native Gammarus duebeni celticus (Crustacea: Amphipoda) are often, but not always, replaced by the invader Gammarus pulex through differential IGP. The muscle-wasting microsporidian parasite Pleistophora mulleri infects the native but not the invader. We found a highly variable prevalence of P. mulleri in uninvaded rivers, with 0–91% of hosts parasitized per sample. In addition, unparasitized natives dominated fast-flowing riffle patches of river, whereas parasitized individuals dominated slower- flowing, pooled patches. We examined the survivorship of invader and native in single and mixed-species microcosms with high, intermediate, and zero parasite prevalence. G. pulex survivorship was high in all treatments, whereas G. duebeni subsp. celticus survivorship was significantly lower in the presence of the invader. Further, parasitized G. duebeni subsp. celticus experienced near-total elimination. Models of the species replacement process implied that parasite-enhanced IGP would make invasion by G. pulex more likely, regardless of habitat and parasite spatial structure. However, where heterogeneity in parasite prevalence creates a landscape of patches with different susceptibilities to invasion, G. pulex may succeed in cases where invasion would not be possible if patches were equivalent. The different responses of parasitized and unparasitized G. duebeni subsp. celticus to environmental heterogeneity potentially link landscape patterns to the success or failure of the invasion process.
Resumo:
In its freshwater amphipod host Gammarus duebeni celticus, the microsporidian parasite Pleistophora mulleri showed 23% transmission efficiency when uninfected individuals were fed infected tissue, but 0% transmission by water-borne and coprophagous routes. Cannibalism between unparasitised and parasitised individuals was significantly in favour of the former (37% compared to 0%). In addition, cannibalism between parasitised individuals was significantly higher than between unparasitised individuals (27% compared to 0%). Thus, parasitised individuals were more likely to be cannibalised by both unparasitised and parasitised individuals. We discuss the conflicting selective forces within this host/parasite relationship, the implications of parasite mediated cannibalism for host population structure and the impacts this may have on the wider aquatic community.
Resumo:
HOX genes are evolutionarily highly conserved. The HOX proteins which they encode are master regulators of embryonic development and continue to be expressed throughout postnatal life. The 39 human HOX genes are located in four clusters (A-D) on different chromosomes at 7p15, 17q21 [corrected] 12q13, and 2q31 respectively and are assumed to have arisen by duplication and divergence from a primordial homeobox gene. Disorders of limb formation, such as hand-foot-genital syndrome, have been traced to mutations in HOXA13 and HOXD13. Evolutionary conservation provides unlimited scope for experimental investigation of the functional control of the Hox gene network which is providing important insights into human disease. Chromosomal translocations involving the MLL gene, the human homologue of the Drosophila gene trithorax, create fusion genes which exhibit gain of function and are associated with aggressive leukaemias in both adults and children. To date 39 partner genes for MLL have been cloned from patients with leukaemia. Models based on specific translocations of MLL and individual HOX genes are now the subject of intense research aimed at understanding the molecular programs involved, and ultimately the design of chemotherapeutic agents for leukaemia. Investigation of the role of HOX genes in cancer has led to the concept that oncology may recapitulate ontology, a challenging postulate for experimentalists in view of the functional redundancy implicit in the HOX gene network.
Resumo:
The HOM-C clustered prototype homeobox genes of Drosophila, and their counterparts, the HOX genes in humans, are highly conserved at the genomic level. These master regulators of development continue to be expressed throughout adulthood in various tissues and organs. The physiological and patho-physiological functions of this network of genes are being avidly pursued within the scientific community, but defined roles for them remain elusive. The order of expression of HOX genes within a cluster is co-ordinated during development, so that the 3' genes are expressed more anteriorly and earlier than the 5' genes. Mutations in HOXA13 and HOXD13 are associated with disorders of limb formation such as hand-foot-genital syndrome (HFGS), synpolydactyly (SPD), and brachydactyly. Haematopoietic progenitors express HOX genes in a pattern characteristic of the lineage and stage of differentiation of the cells. In leukaemia, dysregulated HOX gene expression can occur due to chromosomal translocations involving upstream regulators such as the MLL gene, or the fusion of a HOX gene to another gene such as the nucleoporin, NUP98. Recent investigations of HOX gene expression in leukaemia are providing important insights into disease classification and prediction of clinical outcome. Whereas the oncogenic potential of certain HOX genes in leukaemia has already been defined, their role in other neoplasms is currently being studied. Progress has been hampered by the experimental approach used in many studies in which the expression of small subsets of HOX genes was analysed, and complicated by the functional redundancy implicit in the HOX gene system. Attempts to elucidate the function of HOX genes in malignant transformation will be enhanced by a better understanding of their upstream regulators and downstream target genes.
Resumo:
The AINT/ERIC/TACC genes encode novel proteins with a coiled coil domain at their C-terminus. The founding member of this expanding family of genes, transforming acidic coiled coil 1 (TACC1), was isolated from a BAC contig spanning the breast cancer amplicon-1 on 8p11. Transfection of cells in vitro with TACC1 resulted in anchorage-independent growth consistent with a more "neoplastic" phenotype. Database searches employing the human TACC1 sequence revealed other novel genes, TACC2 and TACC3, with substantial sequence homology particularly in the C-terminal regions encoding the coiled coil domains. TACC2, located at 10q26, is similar to anti-zuai-1 (AZU-1), a candidate breast tumour suppressor gene, and ECTACC, an endothelial cell TACC which is upregulated by erythropoietin (Epo). The murine homologue of TACC3, murine erythropoietin-induced cDNA (mERIC-1) was also found to be upregulated by Epo in the Friend virus anaemia (FVA) model by differential display-PCR. Human ERIC-1, located at 4p16.3, has been cloned and encodes an 838-amino acid protein whose N- and C-terminal regions are highly homologous to the shorter 558-amino acid murine protein, mERIC-1. In contrast, the central portions of these proteins differ markedly. The murine protein contains four 24 amino acid imperfect repeats. ARNT interacting protein (AINT), a protein expressed during embryonic development in the mouse, binds through its coiled coil region to the aryl hydrocarbon nuclear translocator protein (ARNT) and has a central portion that contains seven of the 24 amino acid repeats found in mERIC-1. Thus mERIC-1 and AINT appear to be developmentally regulated alternative transcripts of the gene. Most members of the TACC family discovered so far contain a novel nine amino acid putative phosphorylation site with the pattern [R/K]-X(3)-[E]-X(3)-Y. Genes with sequence homology to the AINT/ERIC/TACC family in other species include maskin in Xenopus, D-TACC in Drosophila and TACC4 in the rabbit. Maskin contains a peptide sequence conserved among eIF-4E binding proteins that is involved in oocyte development. D-TACC cooperates with another conserved microtubule-associated protein Msps to stabilise spindle poles during cell division. The diversity of function already attributed to this protein family, including both transforming and tumour suppressor properties, should ensure that a new and interesting narrative is about to unfold.
Resumo:
Zygotes of the fucoid brown algae provide excellent models for addressing fundamental questions about zygotic symmetry breaking. Although the acquisition of polarity is tightly coordinated with the timing and orientation of the first asymmetric division-with zygotes having to pass through a G1/S-phase checkpoint before the polarization axis can be fixed -the mechanisms behind the interdependence of polarization and cell cycle progression remain unclear. In this study, we combine in vivo Ca(2+) imaging, single cell monitoring of S-phase progression and multivariate analysis of high-throughput intracellular Ca(2+) buffer loading to demonstrate that Ca(2+) signals coordinate polarization and cell cycle progression in the Fucus serratus zygote. Consistent with earlier studies on this organism, and in contrast to animal models, we observe no fast Ca(2+) wave following fertilization. Rather, we show distinct slow localized Ca(2+) elevations associated with both fertilization and S-phase progression, and we show that both S-phase and zygotic polarization are dependent on pre-S-phase Ca(2+) increases. Surprisingly, this Ca(2+) requirement cannot be explained by co-dependence on a single G1/ S-phase checkpoint, as S phase and zygotic polarization are differentially sensitive to pre-S-phase Ca(2+) elevations and can be uncoupled. Furthermore, subsequent cell cycle progression through M phase is independent of localized actin polymerization and zygotic polarization. This absence of a morphogenesis checkpoint, together with the observed Ca(2+)dependences of S phase and polarization, show that the regulation of zygotic division in the brown algae differs from that in other eukaryotic model systems, such as yeast and Drosophila.
Resumo:
The analysis of gene function through RNA interference (RNAi)-based reverse genetics in plant parasitic nematodes (PPNs) remains inexplicably reliant on the use of long double-stranded RNA (dsRNA) silencing triggers; a practice inherently disadvantageous due to the introduction of superfluous dsRNA sequence. increasing chances of aberrant or off-target gene silencing through interactions between nascent short interfering RNAs (siRNAs) and non-cognate mRNA targets. Recently, we have shown that non-nematode, long dsRNAs have a propensity to elicit profound impacts on the phenotype and migrational abilities of both root knot and cyst nematodes. This study presents, to our knowledge for the first time, gene-specific knockdown of FMRFamide-like peptide (flp) transcripts, using discrete 21 bp siRNAs in potato cyst nematode Globodera pallida, and root knot nematode Meloidogyne incognita infective (J2) stage juveniles. Both knockdown at the transcript level through quantitative (q)PCR analysis and functional data derived from migration assay, indicate that siRNAs targeting certain areas of the FMRFamide-like peptide (FLP) transcripts are potent and specific in the silencing of gene function. In addition, we present a method of manipulating siRNA activity through the management of strand thermodynamics. Initial evaluation of strand thermodynamics as a determinant of RNA-induced Silencing Complex (RISC) strand selection (inferred from knockdown efficacy) in the siRNAs presented here suggested that the purported influence of 5' stand stability on guide incorporation may be somewhat promiscuous. However, we have found that on strategically incorporating base mismatches in the sense strand of a G. pallida-specific siRNA we could specifically increase or decrease the knockdown of its target (specific to the antisense strand), presumably through creating more favourable thermodynamic profiles for incorporation of either the sense (non-target-specific) or antisense (target-specific) strand into a cleavage-competent RISC. Whilst the efficacy of similar approaches to siRNA modification has been demonstrated in the context of Drosophila whole-cell lysate preparations and in mammalian cell cultures, it remained to be seen how these sense strand mismatches may impact on gene silencing in vivo, in relation to different targets and in different sequence contexts. This work presents the first application of such an approach in a whole organism; initial results show promise. (C) 2009 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Huntington disease (HD) is a neurodegenerative disorder caused by the abnormal expansion of CAG repeats in the HD gene on chromosome 4p16.3. A recent genome scan for genetic modifiers of age at onset of motor symptoms (AO) in HD suggests that one modifier may reside in the region close to the HD gene itself. We used data from 535 HD participants of the New England Huntington cohort and the HD MAPS cohort to assess whether AO was influenced by any of the three markers in the 4p16 region: MSX1 (Drosophila homeo box homologue 1, formerly known as homeo box 7, HOX7), Delta2642 (within the HD coding sequence), and BJ56 (D4S127). Suggestive evidence for an association was seen between MSX1 alleles and AO, after adjustment for normal CAG repeat, expanded repeat, and their product term (model P value 0.079). Of the variance of AO that was not accounted for by HD and normal CAG repeats, 0.8% could be attributed to the MSX1 genotype. Individuals with MSX1 genotype 3/3 tended to have younger AO. No association was found between Delta2642 (P=0.44) and BJ56 (P=0.73) and AO. This study supports previous studies suggesting that there may be a significant genetic modifier for AO in HD in the 4p16 region. Furthermore, the modifier may be present on both HD and normal chromosomes bearing the 3 allele of the MSX1 marker.
Resumo:
Toll-like receptors (TLRs) are crucial in the innate immune response to pathogens, in that they recognize and respond to pathogen associated molecular patterns, which leads to activation of intracellular signaling pathways and altered gene expression. Vaccinia virus (VV), the poxvirus used to vaccinate against smallpox, encodes proteins that antagonize important components of host antiviral defense. Here we show that the VV protein A52R blocks the activation of the transcription factor nuclear factor kappa B (NF-kappa B) by multiple TLRs, including TLR3, a recently identified receptor for viral RNA. A52R associates with both interleukin 1 receptor-associated kinase 2 (IRAK2) and tumor necrosis factor receptor-associated factor 6 (TRAF6), two key proteins important in TLR signal transduction. Further, A52R could disrupt signaling complexes containing these proteins. A virus deletion mutant lacking the A52R gene was attenuated compared with wild-type and revertant controls in a murine intranasal model of infection. This study reveals a novel mechanism used by VV to suppress the host immunity. We demonstrate viral disabling of TLRs, providing further evidence for an important role for this family of receptors in the antiviral response.
Resumo:
The recognition of microbial pathogens by the innate immune system involves Toll-like receptors (TLRs), which recognize pathogen-associated molecular patterns. Different TLRs recognize different pathogen-associated molecular patterns, with TLR-4 mediating the response to lipopolysaccharide from Gram-negative bacteria. All TLRs have a Toll/IL-1 receptor (TIR) domain, which is responsible for signal transduction. MyD88 is one such protein that contains a TIR domain. It acts as an adapter, being involved in TLR-2, TLR-4 and TLR-9 signalling; however, our understanding of how TLR-4 signals is incomplete. Here we describe a protein, Mal (MyD88-adapter-like), which joins MyD88 as a cytoplasmic TIR-domain-containing protein in the human genome. Mal activates NF-kappaB, Jun amino-terminal kinase and extracellular signal-regulated kinase-1 and -2. Mal can form homodimers and can also form heterodimers with MyD88. Activation of NF-kappaB by Mal requires IRAK-2, but not IRAK, whereas MyD88 requires both IRAKs. Mal associates with IRAK-2 by means of its TIR domain. A dominant negative form of Mal inhibits NF-kappaB, which is activated by TLR-4 or lipopolysaccharide, but it does not inhibit NF-kappaB activation by IL-1RI or IL-18R. Mal associates with TLR-4. Mal is therefore an adapter in TLR-4 signal transduction.
Resumo:
How are resources split between caring for offspring and self-maintenance? Is the timing of immune challenge important? In burying beetles challenging the immune system prior to breeding does not affect the total number and quality of offspring produced during the individual's lifetime. However, the immune system is suppressed during breeding and if an immune challenge is presented during this time the beetle will upregulate its immune system, but at the detriment to the number of offspring produced during that breeding opportunity.We know that parental investment and immune investment are costly processes, but it is unclear which trait will be prioritized when both may be required. Here, we address this question using the burying beetle Nicrophorus vespilloides, carrion breeders that exhibit biparental care of young. Our results show that immunosuppression occurs during provision of parental care. We measured phenoloxidase (PO) on Days 1-8 of the breeding bout and results show a clear decrease in PO immediately from presentation of the breeding resource onward. Having established baseline immune investment during breeding we then manipulated immune investment at different times by applying a wounding challenge. Beetles were wounded prior to and during the parental care period and reproductive investment quantified. Different effects on reproductive output occur depending on the timing of wounding. Challenging the immune system with wounding prior to breeding does not affect reproductive output and subsequent lifetime reproductive success (LRS). LRS is also unaffected by applying an immune elicitor prior to breeding, though different arms of the immune system are up/downregulated, perhaps indicating a trade-off between cellular and humoral immunity. In contrast, wounding during breeding reduces reproductive output and to the greatest extent if the challenge is applied early in the breeding bout. Despite being immunosuppressed, breeding beetles can still respond to wounding by increasing PO, albeit not to prebreeding levels. This upregulation of PO during breeding may affect parental investment, resulting in a reduction in reproductive output. The potential role of juvenile hormone in controlling this trade-off is discussed.
Resumo:
Galactosemia is an inherited metabolic disease in which galactose is not properly metabolised. There are various theories to explain the molecular pathology, and recent experimental evidence strongly suggests that oxidative stress plays a key role. High galactose diets are damaging to experimental animals and oxidative stress also plays a role in this toxicity which can be alleviated by purple sweet potato colour (PSPC). This plant extract is rich in acetylated anthocyanins which have been shown to quench free radical production. The objective of this Commentary is to advance the hypothesis that PSPC, or compounds therefrom, may be a viable basis for a novel therapy for galactosemia.