5 resultados para Doctor of philosophy degree - Australia
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Gas temperature is of major importance in plasma based surface treatment, since the surface processes are strongly temperature sensitive. The spatial distribution of reactive species responsible for surface modification is also influenced by the gas temperature. Industrial applications of RF plasma reactors require a high degree of homogeneity of the plasma in contact with the substrate. Reliable measurements of spatially resolved gas temperatures are, therefore, of great importance. The gas temperature can be obtained, e.g. by optical emission spectroscopy (OES). Common methods of OES to obtain gas temperatures from analysis of rotational distributions in excited states do not include the population dynamics influenced by cascading processes from higher electronic states. A model was developed to evaluate this effect on the apparent rotational temperature that is observed. Phase resolved OES confirmed the validity of this model. It was found that cascading leads to higher apparent temperatures, but the deviation (~25 K) is relatively small and can be ignored in most cases. This analysis is applied to investigate axially and radially resolved temperature profiles in an inductively coupled hydrogen RF discharge.
Resumo:
Measuring the degree of inconsistency of a belief base is an important issue in many real world applications. It has been increasingly recognized that deriving syntax sensitive inconsistency measures for a belief base from its minimal inconsistent subsets is a natural way forward. Most of the current proposals along this line do not take the impact of the size of each minimal inconsistent subset into account. However, as illustrated by the well-known Lottery Paradox, as the size of a minimal inconsistent subset increases, the degree of its inconsistency decreases. Another lack in current studies in this area is about the role of free formulas of a belief base in measuring the degree of inconsistency. This has not yet been characterized well. Adding free formulas to a belief base can enlarge the set of consistent subsets of that base. However, consistent subsets of a belief base also have an impact on the syntax sensitive normalized measures of the degree of inconsistency, the reason for this is that each consistent subset can be considered as a distinctive plausible perspective reflected by that belief base,whilst eachminimal inconsistent subset projects a distinctive viewof the inconsistency. To address these two issues,we propose a normalized framework formeasuring the degree of inconsistency of a belief base which unifies the impact of both consistent subsets and minimal inconsistent subsets. We also show that this normalized framework satisfies all the properties deemed necessary by common consent to characterize an intuitively satisfactory measure of the degree of inconsistency for belief bases. Finally, we use a simple but explanatory example in equirements engineering to illustrate the application of the normalized framework.