5 resultados para Diffusion Equation

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is shown how the fractional probability density diffusion equation for the diffusion limit of one-dimensional continuous time random walks may be derived from a generalized Markovian Chapman-Kolmogorov equation. The non-Markovian behaviour is incorporated into the Markovian Chapman-Kolmogorov equation by postulating a Levy like distribution of waiting times as a kernel. The Chapman-Kolmogorov equation so generalised then takes on the form of a convolution integral. The dependence on the initial conditions typical of a non-Markovian process is treated by adding a time dependent term involving the survival probability to the convolution integral. In the diffusion limit these two assumptions about the past history of the process are sufficient to reproduce anomalous diffusion and relaxation behaviour of the Cole-Cole type. The Green function in the diffusion limit is calculated using the fact that the characteristic function is the Mittag-Leffler function. Fourier inversion of the characteristic function yields the Green function in terms of a Wright function. The moments of the distribution function are evaluated from the Mittag-Leffler function using the properties of characteristic functions and a relation between the powers of the second moment and higher order even moments is derived. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Volume: 11 Issue: 4 Pages: 465-477 Published: MAR 2000 Times Cited: 9 References: 15 Citation MapCitation Map beta Abstract: We extend the concept of time operator for general semigroups and construct a non-self-adjoint time operator for the diffusion equation which is intertwined with the unilateral shift. We obtain the spectral resolution, the age eigenstates and a new shift representation of the solution of the diffusion equation. Based on previous work we obtain similarly a self-adjoint time operator for Relativistic Diffusion. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the derivation of a kinetic equation for a charged test particle weakly interacting with an electrostatic plasma in thermal equilibrium, subject to a uniform external magnetic field. The Liouville equation leads to a generalized master equation to second order in the `weak' interaction; a Fokker-Planck-type equation then follows as a `Markovian' approximation. It is shown that such an equation does not preserve the positivity of the distribution function f(x,v;t). By applying techniques developed in the theory of open systems, a correct Fokker-Planck equation is derived. Explicit expressions for the diffusion and drift coefficients, depending on the magnetic field, are obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a study on the transport properties through conductivity (s), viscosity (?), and self-diffusion coefficient (D) measurements of two pure protic ionic liquids—pyrrolidinium hydrogen sulfate, [Pyrr][HSO4], and pyrrolidinium trifluoroacetate, [Pyrr][CF3COO]—and their mixtures with water over the whole composition range at 298.15 K and atmospheric pressure. Based on these experimental results, transport mobilities of ions have been then investigated in each case through the Stokes–Einstein equation. From this, the proton conduction in these PILs follows a combination of Grotthuss and vehicle-type mechanisms, which depends also on the water composition in solution. In each case, the displacement of the NMR peak attributed to the labile proton on the pyrrolidinium cation with the PILs concentration in aqueous solution indicates that this proton is located between the cation and the anion for a water weight fraction lower than 8%. In other words, for such compositions, it appears that this labile proton is not solvated by water molecules. However, for higher water content, the labile protons are in solution as H3O+. This water weight fraction appears to be the solvation limit of the H+ ions by water molecules in these two PILs solutions. However, [Pyrr][HSO4] and [Pyrr][CF3COO] PILs present opposed comportment in aqueous solution. In the case of [Pyrr][CF3COO], ?, s, D, and the attractive potential, Epot, between ions indicate clearly that the diffusion of each ion is similar. In other words, these ions are tightly bound together as ion pairs, reflecting in fact the importance of the hydrophobicity of the trifluoroacetate anion, whereas, in the case of the [Pyrr][HSO4], the strong H-bond between the HSO4– anion and water promotes a drastic change in the viscosity of the aqueous solution, as well as on the conductivity which is up to 187 mS·cm–1 for water weight fraction close to 60% at 298 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present in this work a comparative study on density and transport properties, such as the conductivity (sigma), viscosity (eta) and self-diffusion coefficients (D), for electrolytes based on the lithium hexafluorophosphate, LiPF6; or on the lithium tris(pentafluoroethane)-trifluorophosphate, LiFAP dissolved in a binary mixture of ethylene carbonate (EC) and dimethylcarbonate (DMC) (50:50 wt%). For each electrolyte, the temperature dependence on transport properties over a temperature range from 10 to 80 degrees C and 20 to 70 degrees C for viscosity and conductivity, respectively, exhibits a non-Arrhenius behavior. However, this dependence is correctly correlated by using the Vogel-Tamman-Fulcher (VTF) type fitting equation. In each case, the best-fit parameters, such as the pseudo activation energy and ideal glass transition temperature were then extracted. The self-diffusion coefficients (D) of the Li+ cation and PF6- or FAP(-) anions species, in each studied electrolyte, were then independently determined by observing Li-3, F-19 and P-31 nuclei with the pulsed-gradient spin-echo (PGSE) NMR technique over the same temperature range from 20 to 80 degrees C. Results show that even if the diffusion of the lithium cation is quite similar in both electrolytes, the anions diffusion differs notably. In the case of the LiPF6-based electrolyte, for example at T approximate to 75 degrees C (high temperature), the self-diffusion coefficients of Li+ cations in solution (D (Li+)approximate to 5 x 10(-19) m(2) s(-1)) is 1.6 times smaller than that of PF6- anions (D (PF6-) = 8.5 x 10(-19) m(2) s(-1)), whereas in the case of the LiFAP-based electrolyte, FAP(-) anions diffuse at same rate as the Li+ cations (D (FAP(-)) = 5 x 10(-1) m(2) s(-1)). Based on these experimental results, the transport mobility of ions were then investigated through Stokes-Einstein and Nernst-Einstein equations to determine the transport number of lithium t(Li)(+), effective radius of solvated Li+ and of PF6- and FAP(-) anions, and the degree of dissociation of these lithium salts in the selected EC/DMC (50:50 wt%) mixture over a the temperature range from 20 to 80 degrees C. This study demonstrates the conflicting nature of the requirements and the advantage of the well-balanced properties as ionic mobility and dissociation constant of the selected electrolytes. (C) 2013 Elsevier Ltd. All rights reserved.