21 resultados para Differential pulse stripping voltammetry, Fluoroquinolone antibiotics, Chemometrics, Food samples

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline TiO2 deposited on conducting glass plates is shown to be an excellent material for preconcentration of silver and mercury, via photochemical reaction, prior to their detection by anodic stripping voltammetry (ASV). During the first stage of growth in the photoreduction of silver or mercury, 3D nuclei are formed on the TiO2 film. As the deposition proceeds micrometer size agglomerates grow on the surface. The conical morphology of the silver nuclei grown on a (110) rutile single crystal in the initial stages of growth suggests that there is a preferential deposition of silver at the centre of the growing nuclei. When the nuclei size reach a critical value (ca. 400 nm diameter, 40 nm height) the morphology changes to a globular shape without any preferential site for deposition on the surface of the silver nucleus. It was observed that micromolar concentrations of silver or mercury can be detected by anodic stripping voltammetry and relatively large amounts of these metals (micrometer scale nuclei) can be loaded on the nanocrystalline TiO2 film surface. The latter opens the possibility of analytical applications of nanocrystalline TiO2 electrodes for the selective detection of silver or mercury via photochemical anodic stripping voltammetry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A reliable and cost-effective electrochemical method for the detection of deoxynivalenol (DON) in cereals and cereal-based food samples based on the use of a novel anti-DON Fab fragment is presented. The analytical system employed, Enzyme-Linked-Immunomagnetic-Electrochemical (ELIME) assay, is based on the use of immunomagnetic beads (IMBs) coupled with eight magnetized screen-printed electrodes (8-mScPEs) as electrochemical transducers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a portable electrochemical instrument capable of detecting and identifying heavy metals in soil, in situ. The instrument has been developed for use in a variety of situations to facilitate contaminated land surveys, avoiding expensive and time-consuming procedures. The system uses differential pulse anodic stripping voltammetry which is a precise and sensitive analytical method with excellent limits of detection. The identification of metals is based on a statistical microprocessor-based method. The instrument is capable of detecting six different toxic metals (lead, cadmium, zinc, nickel, mercury and copper) with good sensitivity

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an electrochemical instrumentation system capable of real-time in situ detection of heavy metals. A practical approach to introduce acidity compensation against changes in amplitude of the peak currents is also presented. The compensated amplitudes can then be used to predict the concentration level of heavy metals. The system uses differential pulse anodic stripping voltammetry, which is a precise and sensitive analytical method with excellent limits of detection. The instrument is capable of detecting lead, cadmium, zinc, nickel and copper with good sensitivity and precision. The system avoids expensive and time-consuming procedures and may be used in a variety of situations to help environmental assessment and control. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents a low-cost portable electrochemical instrument capable of on-site identification of heavy metals. The instrument acquires metal-specific voltage and current signals by the application of differential pulse anodic stripping voltammetry. This technique enhances the analytical current and rejects the background current, resulting in a higher signal-to-noise ratio for a better detection limit. The identification of heavy metals is based on an intelligent machine-based method using a multilayer perceptron neural network consisting of three layers of neurons. The neural network is implemented using a 16 bit microcontroller. The system is developed for use in the field in order to avoid expensive and time-consuming procedures and can be used in a variety of situations to help environmental assessment and control. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of anodic stripping voltammetry (ASV)has been proven in the past to be a precise and sensitive analytical method with an excellent limit of detection. Electrochemical sensors could help to avoid expensive and time consuming procedures as sample taking and storage and provide a both sensitive and reliable method for the direct monitoring of heavy metals in the aquatic environment. Solid electrodes which have been used in this work, were produced using previously developed methods. Commercially available and newly designed, screen printed carbon and gold plated working electrodes (WE) were compared. Good results were achieved with the screen printed and plated electrodes under conditions optimized for each electrode material. The electrode stability, reproducibility of single measurements and the limit of detection obtained for Pb were satisfactory (3*10-6mol/l on screen printed carbon WEs after 60 s of deposition and 6*10-6 mol/l on gold plated WEs after 5 min of deposition). Complete 3-electrode-sets (counter, reference and working electrode) were screen printed on different substrates (glass, polycarbonate and alumina). Also here, both carbon and gold were used as WE. Using 3-electrode-sets with a gold plated WE on glass was a limit of detection of 7*10-7 mol/l was achieved after only 60 s of deposition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electroanalytical quantification of chloride in [C(4)mim][BF4], [C(4)mim][NTf2] and [C(4)mim][PF6] ionic liquids has been explored using linear sweep and square wave voltammetry. Cathodic stripping voltammetry at a silver disk electrode is found to be the most sensitive. The methodology is based on first holding the potential of the electrode at +2.0 V (vs Ag wire), to accumulate silver chloride at the electrode. On applying a cathodic scan, a stripping wave is observed corresponding to the reduction of the silver chloride. This stripping protocol was found to detect ppb levels of chloride in [C(4)mim][BF4], [C(4)mim][NTf2], and [C(4)mim][PF6]. Although other methods for chloride have been reported for [BF4](-)- and [PF6](-)-based ionic liquids, no methods have been reported for [NTf2](-) ionic liquids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The determination of chloride impurities in water miscible and water immiscible ionic liquids has been explored using ion chromatography (IC) and cathodic stripping voltammetry (CSV). This paper shows the first quantification of chloride in [NTf2](-) based ILs. The parameters investigated include sample preparation, solvent effect, sample stability, and limit of quantification (LOQ).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The subjective performance of the G. 722 7-kHz wideband speech-coding recommendation using music signals is described. A number of audible distortions specific to music signals were found to be present in real-time evaluations of the coder. As a result, three modifications are proposed which are found to improve the performance for music signals. These modifications are compatible with the G. 722 system configuration. The results obtained clearly demonstrate the very high coding efficiency of subband ADPCM (adaptive differential pulse-code modulation) with comparison to digitally companding and ADM schemes when applied to music signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel hand-held instrument capable of real-time in situ detection and identification of heavy metals. The proposed system provides the facilities found in a traditional lab-based instrument in a hand held a design. In contrast to existing commercial systems, it can stand alone without the need of an associated computer. The electrochemical instrument uses anodic stripping voltammetry which is a precise and sensitive analytical method with excellent limits of detection. The sensors comprise disposable screen-printed (solid working) electrodes rather than the more common hanging mercury drop electrodes. The system is reliable, easy to use, safe, avoids expensive and time-consuming procedures and may be used in a variety of situations to help in the fields of environmental assessment and control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter presents a novel hand-held instrument capable of real-time in situ detection and identification of heavy metals, along with the potential use of novel taggants in environmental forensic investigations. The proposed system provides the facilities found in a traditional laboratory-based instrument but in a hand held design, without the need for an associated computer. The electrochemical instrument uses anodic stripping voltammetry, which is a precise and sensitive analytical method with excellent limits of detection. The sensors comprise a small disposable plastic strip of screen-printed electrodes rather than the more common glassy carbon disc and gold electrodes. The system is designed for use by a surveyor on site, allowing them to locate hotspots, thus avoiding the expense and time delay of prior laboratory analysis. This is particularly important in environmental forensic analysis when a site may have been released back to the owner and samples could be compromised on return visits. The system can be used in a variety of situations in environmental assessments, the data acquired from which provide a metals fingerprint suitable for input to a database. The proposed novel taggant tracers, based on narrow-band atomic fluorescence, are under development for potential deployment as forensic environmental tracers. The use of discrete fluorescent species in an environmentally stable host has been investigated to replace existing toxic, broadband molecular dye tracers. The narrow band emission signals offer the potential for tracing a large number of signals in the same environment. This will give increased data accuracy and allow multiple source environmental monitoring of environmental parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sensitive and specific enzyme-linked immunosorbent assays (ELISAs) were developed for the detection of two illegal synthetic dyes: Methyl Yellow (MY) and Rhodamine B (RB) in food. Polyclonal antibodies were raised against synthesised immunogens and employed in unique direct disequilibrium ELISAs. The time of the assays was only twenty minutes (five minutes for each incubation step with sample and enzyme conjugate and ten minutes with enzyme substrate). The IC50 for MY was in the range 1.4-4.2 ng mL(-1) and for RB 0.1-0.5 ng mL(-1). A simple sample preparation method was developed for the analysis of a range of sauces. In the case of spices a dispersive solid phase extraction was applied to purify the extracts. The testing of twenty samples took approximately one and a half hours (including sample preparation and analysis). Both assays were validated according to the Commission Decision 2002/657/EC criteria for use in sauces and spices. The detection capability for MY in sauces and spices was determined to be less than 15 ng g(-1) and 50 ng g(-1), respectively and for RB, 10 ng g(-1) for both types of food samples. The precision of the developed assays was determined in a repeatability study. The intra-and inter-assay coefficients of variation were less than 25% for both tests and matrix types. The simplicity and performance of both assays indicate that they will be very reliable screening methods for the detection of the illegal dyes MY and RB in a range of food products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study rigorously evaluated a previously developed immunobead array method to simultaneously detect three important foodborne pathogens, Campylobacter jejuni, Listeria monocytogenes, and Salmonella spp., for its actual application in routine food testing. Due to the limitation of the detection limit of the developed method, an enrichment step was included in this study by using Campylobacter Enrichment Broth for C. jejuni and Universal Pre-enrichment Broth for L. monocytogenes and Salmonella spp.. The findings show that the immunobead array method was capable of detecting as low as 1 CFU of the pathogens spiked in the culture media after being cultured for 24 hours for all three pathogens. The immunobead array method was further evaluated for its pathogen detection capabilities in ready-to-eat (RTE) and ready-to-cook (RTC) chicken samples and proven to be able to detect as low as 1 CFU of the pathogens spiked in the food samples after being cultured for 24 hours in the case of Salmonella spp., and L. monocytogenes and 48 hours in the case of C. jejuni. The method was subsequently validated with three types of chicken products (RTE, n=30; RTC, n=20; raw chicken, n=20) and was found to give the same results as the conventional plating method. Our findings demonstrated that the previously developed immunobead array method could be used for actual food testing with minimal enrichment period of only 52 hours, whereas the conventional ISO protocols for the same pathogens take 90-144 hours. The immunobead array was therefore an inexpensive, rapid and simple method for the food testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The solubility of manganese in mercury was determined electrochemically via amalgamation and stripping in the room temperature ionic liquid n-hexyltriethylammonium bis(trifluoromethanesulfonyl)imide, [N-6,N-2,N-2,N-2][NTf2]. A hemispherical mercury electrode was made by electrodepositing mercury onto a planar platinum microelectrode. Cyclic voltammetry of Mn2+ in [N-6,N-2,N-2,N-2][NTf2] at the mercury microhemisphere electrode was investigated at temperatures of 298, 303 and 313 K. The solubility of Mn in Hg was determined on the basis of the charge under the reduction peak (Mn2+ --> Mn-0) and the corresponding reoxidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In migratory passerine birds, strong magnetic pulses are thought to be diagnostic of the remagnetization of iron minerals in a putative sensory system contained in the beak. Previous evidence suggests that while such a magnetic pulse affects the orientation of migratory birds in orientation cages, no effect was present when pulse-treated birds were tested in natural migration. Here we show that two migrating passerine birds treated with a strong magnetic pulse, designed to alter the magnetic sense, migrated in a direction that differed significantly from that of controls when tested in natural conditions. The orientation of treated birds was different depending on the alignment of the pulse with respect to the magnetic field. These results can aid in advancing understanding of how the putative iron-mineral-based receptors found in birds' beaks may be used to detect and signal the intensity and/or direction of the Earth's magnetic field.