130 resultados para Diesel fuel

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conversion of biomass for production of liquid fuels can help in reducing the greenhouse gas (GHG) emissions which are predominantly generated by combustion of fossil fuels. Adding oxymethylene ethers (OMEs) in conventional diesel fuel has the potential to reduce soot formation during the combustion in a diesel engine. OMEs are downstream products of syngas, which can be generated by the gasification of biomass. In this research, a thermodynamic analysis has been conducted through development of data intensive process models of all the unit operations involved in production of OMEs from biomass. Based on the developed model, the key process parameters affecting the OMEs production including equivalence ratio, H2/CO ratio, and extra water flow rate were identified. This was followed by development of an optimal process design for high OMEs production. It was found that for a fluidized bed gasifier with heat capacity of 28 MW, the conditions for highest OMEs production are at an air amount of 317 tonne/day, at H2/CO ratio of 2.1, and without extra water injection. At this level, the total OMEs production is 55 tonne/day (13 tonne/day OME3 and 9 tonne/day OME4). This model would further be used in a techno-economic assessment study of the whole biomass conversion chain to determine the most attractive pathways.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conversion of agricultural biomass such as wood chips, wheat straw and forest residue for the production of fuels can help in reducing GHG emissions since they are considered as nearly carbon neutral. Around the world there is a significant amount of forest and agricultural-biomass available which could be used for the production of liquid fuels that can be blended with the petroleum-based diesel. Oxymethylene ethers (OMEs) can be derived from biomass via gasification, water-gas shift reaction and methanol production. The addition of OMEs to conventional diesel fuel has great potential to reduce soot formation during the combustion in diesel engines. Unlike methanol and dimethyl ether (DMM) which can also reduce soot formation, the physical properties of OMEs allow the use in modern diesel engines without significant change of the engines infrastructure. In this study, a detailed and data intensive process simulation model was developed to simulate all the unit operations involved in the production of OMEs from biomass. The unit operation considered include biomass drying, gasification, gas cleaning, water gas shift reaction, methanol production and OMEs synthesis. The simulation results were then utilized to conduct a detailed techno-economic assessment study of the whole biomass conversion chain to determine the most attractive pathways for OMEs production. Our recent study shows that the key parameters affecting the OMEs production are equivalence ratio, H2/CO ratio and optimal air flow. Overall, the cost of production ($/liter) of OMEs from different biomass feedstock in Alberta will be determined

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper investigates the performance characteristics of rapeseed methyl ester, EN 14214 biodiesel, when used for electrical generation in compression ignition engines. The work was inspired by the need to replace fossil diesel fuel with a sustainable low carbon alternative while maintaining generator performance, power quality, and compliance with ISO 8528-5. A 50-kVA Perkins diesel engine generator was used to assess the impact of biodiesel with particular regard to gen-set fuel consumption, load acceptance, and associated standards. Tests were performed on the diesel gen-set for islanded and grid-connected modes of operation, hence both steady-state and transient performance were fully explored. Performance comparisons were made with conventional fossil diesel fuel, revealing minimal technical barriers for electrical generation from this sustainable, carbon benign fuel. Recommendations for improved transient performance are proposed and validated through tests.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the synthesis of a family of gelators in which alkyl chains are connected to the amino groups of L-lysine methyl ester using a range of different hydrogen bonding linking groups (carbamate, amide, urea, thiourea and diacylhydrazine) using simple synthetic methodology based on isocyanate or acid chloride chemistry. The ability of these compounds to gelate organic solvents such as toluene or cyclohexane can be directly related to the ability of the linking group to form intermolecular hydrogen bonds. In general terms, the ability to structure solvents can be considered as: thiourea <carbamate <amide <urea similar to diacylhydrazine. This process has been confirmed by thermal measurements, scanning electron microscopy (SEM) and infrared and circular dichroism spectroscopies. By deprotecting the methyl ester group, we have demonstrated that a balance between hydrophobic and hydrophilic groups is essential-if the system has too much hydrophilicity (e. g., diacylhydrazine, urea) it will not form gels due to low solubility in the organic media. However, the less effective gelators based on amide and carbamate linkages are enhanced by converting the methyl ester to a carboxylic acid. Furthermore, subsequent mixing of the acid with a second component (diaminododecane) further enhances the ability to form networks, and, in the case of the amide, generates a two-component gel, which can immobilise a wide range of solvents of industrial interest including petrol and diesel (fuel oils), olive oil and sunflower oil (renewable food oils) and ethyl laurate, isopropyl myristate and isopropyl palmitate (oils used in pharmaceutical formulation). The gels are all thermoreversible, and may therefore be useful in controlled release/formulation applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The conversion of biomass for the production of liquid fuels can help reduce the greenhouse gas (GHG) emissions that are predominantly generated by the combustion of fossil fuels. Oxymethylene ethers (OMEs) are a series of liquid fuel additives that can be obtained from syngas, which is produced from the gasification of biomass. The blending of OMEs in conventional diesel fuel can reduce soot formation during combustion in a diesel engine. In this research, a process for the production of OMEs from woody biomass has been simulated. The process consists of several unit operations including biomass gasifi- cation, syngas cleanup, methanol production, and conversion of methanol to OMEs. The methodology involved the development of process models, the identification of the key process parameters affecting OME production based on the process model, and the development of an optimal process design for high OME yields. It was found that up to 9.02 tonnes day1 of OME3, OME4, and OME5 (which are suitable as diesel additives) can be produced from 277.3 tonnes day1 of wet woody biomass. Furthermore, an optimal combination of the parameters, which was generated from the developed model, can greatly enhance OME production and thermodynamic efficiency. This model can further be used in a techno- economic assessment of the whole biomass conversion chain to produce OMEs. The results of this study can be helpful for petroleum-based fuel producers and policy makers in determining the most attractive pathways of converting bio-resources into liquid fuels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents a multiple input single output fuzzy logic governor algorithm that can be used to improve the transient response of a diesel generating set, when supplying an islanded load. The proposed governor uses the traditional speed input in addition to voltage and power factor to modify the fuelling requirements during various load disturbances. The use of fuzzy logic control allows the use of PID type structures that can provide variable gain strategies to account for non-linearities in the system. Fuzzy logic also provides a means of processing other input information by linguistic reasoning and a logical control output to aid the governor action during transient disturbance. The test results were obtained using a 50 kVA naturally aspirated diesel generator testing facility. Both real and reactive load tests were conducted. The complex load test results demonstrate that, by using additional inputs to the governor algorithm, enhanced generator transient speed recovery response can be obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flow maldistribution of the exhaust gas entering a Diesel Particulate Filter (DPF) can cause uneven soot distribution during loading and excessive temperature gradients during the regeneration phase. Minimising the magnitude of this maldistribution is therefore an important consideration in the design of the inlet pipe and diffuser, particularly in situations where packaging constraints dictate bends in the inlet pipe close to the filter, or a sharp diffuser angle. This paper describes the use of Particle Image Velocimetry (PIV) to validate a Computational Fluid Dynamic (CFD) model of the flow within the inlet diffuser of a DPF so that CFD can be used with confidence as a tool to minimise this flow maldistribution. PIV is used to study the flow of gas into a DPF over a range of steady state flow conditions. The distribution of flow approaching the front face of the substrate was of particular interest to this study. Optically clear diffusing cones were designed and placed between pipe and substrate to allow PIV analysis to take place. Stereoscopic PIV was used to eliminate any error produced by the optical aberrations caused by looking through the curved wall of the inlet cone. In parallel to the experiments, numerical analysis was carried out using a CFD program with an incorporated DPF model. Boundary conditions for the CFD simulations were taken from the experimental data, allowing an experimental validation of the numerical results. The CFD model incorporated a DPF model, the cement layers seen in segmented filters and the intumescent matting that is commonly used to pack the filter into a metal casing. The mesh contained approximately 580,000 cells and used the realizable ?-e turbulence model. The CFD simulation predicted both pressure drop across the DPF and the velocity field within the cone and at the DPF face with reasonable accuracy, providing confidence in the use the CFD in future work to design new, more efficient cones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmental concerns relating to gaseous emissions from transport have led to growth in the use of compressed natural gas vehicles worldwide with an estimated 13 million Natural Gas Vehicles (NGVs) currently in operation. Across Europe, many countries are replacing traditional diesel oil in captive fleets such as buses used for public transport and heavy and light goods vehicles used for freight and logistics with CNG vehicles. Initially this was to reduce localised air pollution in urban environments. However, with the need to reduce greenhouse gas emissions CNG is seen as a cleaner more energy efficient and environmental friendly alternative. This paper briefly examines the growth of NGVs in Europe and worldwide. Then a case study on CNG the introduction in Spain and Italy is presented. As part of the case study, policy interventions are examined. Finally, a statistical analysis of private and public refuelling stations in both countries is also provided. CNG can also be mixed with biogas. This study and the role of CNG is relevant because of the existing European Union Directive 2009/28/EC target, requiring that 10% of transport energy come from renewable sources, not alone biofuels such as biogas. CNG offers another alternative transport fuel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid vehicles can use energy storage systems to disconnect the engine from the driving wheels of the vehicle. This enables the engine to be run closer to its optimum operating condition, but fuel energy is still wasted through the exhaust system as heat. The use of a turbogenerator on the exhaust line addresses this problem by capturing some of the otherwise wasted heat and converting it into useful electrical energy.

This paper outlines the work undertaken to model the engine of a diesel-electric hybrid bus, coupled with a hybrid powertrain model which analysed the performance of a hybrid vehicle over a drive-cycle. The distribution of the turbogenerator power was analysed along with the effect on the fuel consumption of the bus. This showed that including the turbogenerator produced a 2.4% reduction in fuel consumption over a typical drive-cycle.

The hybrid bus generator was then optimised to improve the performance of the combined vehicle/engine package and the turbogenerator was then shown to offer a 3.0% reduction in fuel consumption. The financial benefits of using the turbogenerator were also considered in terms of fuel savings for operators. For an average bus, a turbogenerator could reduce fuel costs by around £1200 per year.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fuel consumption of automotive vehicles has become a prime consideration to manufacturers and operators as fuel prices continue to rise steadily, and legislation governing toxic emissions becomes ever more strict. This is particularly true for bus operators as government fuel subsidies are cut or removed.

In an effort to reduce the fuel consumption of a diesel-electric hybrid bus, an exhaust recovery turbogenerator has been selected from a wide ranging literature review as the most appropriate method of recovering some of the wasted heat in the exhaust line. This paper examines the effect on fuel consumption of a turbogenerator applied to a 2.4-litre diesel engine.

A validated one-dimensional engine model created using Ricardo WAVE was used as a baseline, and was modified in subsequent models to include a turbogenerator downstream, and in series with, the turbocharger turbine. A fuel consumption map of the modified engine was produced, and an in-house simulation tool was then used to examine the fuel economy benefit delivered by the turbogenerator on a bus operating on various drive-cycles.

A parametric study is presented which examined the performance of turbogenerators of various size and power output. The operating strategy of the turbogenerator was also discussed with a view to maximising turbine efficiency at each operating point.

The performance of the existing turbocharger on the hybrid bus was also investigated; both the compressor and turbine were optimised and the subsequent benefits to the fuel consumption of the vehicle were shown.

The final configuration is then presented and the overall improvement in fuel economy of the hybrid bus was determined over various drive-cycles.