13 resultados para Delay tolerant network
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The requirement to provide multimedia services with QoS support in mobile networks has led to standardization and deployment of high speed data access technologies such as the High Speed Downlink Packet Access (HSDPA) system. HSDPA improves downlink packet data and multimedia services support in WCDMA-based cellular networks. As is the trend in emerging wireless access technologies, HSDPA supports end-user multi-class sessions comprising parallel flows with diverse Quality of Service (QoS) requirements, such as real-time (RT) voice or video streaming concurrent with non real-time (NRT) data service being transmitted to the same user, with differentiated queuing at the radio link interface. Hence, in this paper we present and evaluate novel radio link buffer management schemes for QoS control of multimedia traffic comprising concurrent RT and NRT flows in the same HSDPA end-user session. The new buffer management schemes—Enhanced Time Space Priority (E-TSP) and Dynamic Time Space Priority (D-TSP)—are designed to improve radio link and network resource utilization as well as optimize end-to-end QoS performance of both RT and NRT flows in the end-user session. Both schemes are based on a Time-Space Priority (TSP) queuing system, which provides joint delay and loss differentiation between the flows by queuing (partially) loss tolerant RT flow packets for higher transmission priority but with restricted access to the buffer space, whilst allowing unlimited access to the buffer space for delay-tolerant NRT flow but with queuing for lower transmission priority. Experiments by means of extensive system-level HSDPA simulations demonstrates that with the proposed TSP-based radio link buffer management schemes, significant end-to-end QoS performance gains accrue to end-user traffic with simultaneous RT and NRT flows, in addition to improved resource utilization in the radio access network.
Resumo:
This paper proposes millimeter wave (mmWave) mobile broadband for achieving secure communication in downlink cellular network. Analog beamforming with phase shifters is adopted for the mmWave transmission. The secrecy throughput is analyzed based on two different transmission modes, namely delay-tolerant transmission and delay-limited transmission. The impact of large antenna arrays at the mmWave frequencies on the secrecy throughput is examined. Numerical results corroborate our analysis and show that mmWave systems can enable significant secrecy improvement. Moreover, it is indicated that with large antenna arrays, multi-gigabit per second secure link at the mmWave frequencies can be reached in the delay-tolerant transmission mode and the adverse effect of secrecy outage vanishes in the delay-limited transmission mode.
Resumo:
This paper exploits an amplify-and-forward (AF) two-way relaying network (TWRN), where an energy constrained relay node harvests energy with wireless power transfer. Two bidirectional protocols, multiple access broadcast (MABC) protocol and time division broadcast (TDBC) protocol, are considered. Three wireless power transfer policies, namely, 1) dual-source (DS) power transfer; 2) single-fixed-source (SFS) power transfer; and 3) single-best-source (SBS) power transfer are proposed and well-designed based on time switching receiver architecture. We derive analytical expressions to determine the throughput both for delay-limited transmission and delay-tolerant transmission. Numerical results corroborate our analysis and show that MABC protocol achieves a higher throughput than TDBC protocol. An important observation is that SBS policy offers a good tradeoff between throughput and power.
Resumo:
This paper investigates a queuing system for QoS optimization of multimedia traffic consisting of aggregated streams with diverse QoS requirements transmitted to a mobile terminal over a common downlink shared channel. The queuing system, proposed for buffer management of aggregated single-user traffic in the base station of High-Speed Downlink Packet Access (HSDPA), allows for optimum loss/delay/jitter performance for end-user multimedia traffic with delay-tolerant non-real-time streams and partially loss tolerant real-time streams. In the queuing system, the real-time stream has non-preemptive priority in service but the number of the packets in the system is restricted by a constant. The non-real-time stream has no service priority but is allowed unlimited access to the system. Both types of packets arrive in the stationary Poisson flow. Service times follow general distribution depending on the packet type. Stability condition for the model is derived. Queue length distribution for both types of customers is calculated at arbitrary epochs and service completion epochs. Loss probability for priority packets is computed. Waiting time distribution in terms of Laplace-Stieltjes transform is obtained for both types of packets. Mean waiting time and jitter are computed. Numerical examples presented demonstrate the effectiveness of the queuing system for QoS optimization of buffered end-user multimedia traffic with aggregated real-time and non-real-time streams.
Resumo:
In multiuser diversity systems, the impact of large-scale fading on the total system performance such as link quality and system power has not been widely addressed. Considering large-scale fading, we propose an adaptive multiuser scheduling to minimize the total system power while reducing the effect of large-scale fading on the system bit error rate. The number of active users is adapted to every shadow variation, which varies slower than small-scale fading. We consider the two widely used multiuser systems (i.e., delay-tolerant, and delay-sensitive multiuser systems). Closed-form expressions for the bit error rate are derived. The selection procedure for the minimum number of users is introduced for guaranteed performance of the above multiuser systems. The impact of adaptive multiuser diversity gain on the system power and bit error rate is illustrated over large-scale fading channels by numerical results.
Resumo:
Multiuser selection scheduling concept has been recently proposed in the literature in order to increase the multiuser diversity gain and overcome the significant feedback requirements for the opportunistic scheduling schemes. The main idea is that reducing the feedback overhead saves per-user power that could potentially be added for the data transmission. In this work, the authors propose to integrate the principle of multiuser selection and the proportional fair scheduling scheme. This is aimed especially at power-limited, multi-device systems in non-identically distributed fading channels. For the performance analysis, they derive closed-form expressions for the outage probabilities and the average system rate of the delay-sensitive and the delay-tolerant systems, respectively, and compare them with the full feedback multiuser diversity schemes. The discrete rate region is analytically presented, where the maximum average system rate can be obtained by properly choosing the number of partial devices. They optimise jointly the number of partial devices and the per-device power saving in order to maximise the average system rate under the power requirement. Through the authors’ results, they finally demonstrate that the proposed scheme leveraging the saved feedback power to add for the data transmission can outperform the full feedback multiuser diversity, in non-identical Rayleigh fading of devices’ channels.
Resumo:
The future convergence of voice, video and data applications on the Internet requires that next generation technology provides bandwidth and delay guarantees. Current technology trends are moving towards scalable aggregate-based systems where applications are grouped together and guarantees are provided at the aggregate level only. This solution alone is not enough for interactive video applications with sub-second delay bounds. This paper introduces a novel packet marking scheme that controls the end-to-end delay of an individual flow as it traverses a network enabled to supply aggregate- granularity Quality of Service (QoS). IPv6 Hop-by-Hop extension header fields are used to track the packet delay encountered at each network node and autonomous decisions are made on the best queuing strategy to employ. The results of network simulations are presented and it is shown that when the proposed mechanism is employed the requested delay bound is met with a 20% reduction in resource reservation and no packet loss in the network.
Resumo:
EUROCHIP (European Cancer Health Indicators Project) focuses on understanding inequalities in the cancer burden, care and survival by the indicators "stage at diagnosis," "cancer treatment delay" and "compliance with cancer guidelines" as the most important indicators. Our study aims at providing insight in whether cancer registries collect well-defined variables to determine these indicators in a comparative way. Eighty-six general European population-based cancer registries (PBCR) from 32 countries responded to the questionnaire, which was developed by EUROCHIP in collaboration with ENCR (European Network of Cancer Registries) and EUROCOURSE. Only 15% of all the PBCR in EU had all three indicators available. The indicator "stage at diagnosis" was gathered for at least one cancer site by 81% (using TNM in 39%). Variables for the indicator "cancer treatment delay" were collected by 37%. Availability of type of treatment (30%), surgery date (36%), starting date of radiotherapy (26%) and starting date of chemotherapy (23%) resulted in 15% of the PBCRs to be able to gather the indicator "compliance to guidelines". Lack of data source access and qualified staff were the major reasons for not collecting all the variables. In conclusion, based on self-reporting, a few of the participating PBCRs had data available which could be used for clinical audits, evaluation of cancer care projects, survival and for monitoring national cancer control strategies. Extra efforts should be made to improve this very efficient tool to compare cancer burden and the effects of the national cancer plans over Europe and to learn from each other. © 2012 UICC.
Resumo:
2-D Discrete Cosine Transform (DCT) is widely used as the core of digital image and video compression. In this paper, we present a novel DCT architecture that allows aggressive voltage scaling by exploiting the fact that not all intermediate computations are equally important in a DCT system to obtain "good" image quality with Peak Signal to Noise Ratio(PSNR) > 30 dB. This observation has led us to propose a DCT architecture where the signal paths that are less contributive to PSNR improvement are designed to be longer than the paths that are more contributive to PSNR improvement. It should also be noted that robustness with respect to parameter variations and low power operation typically impose contradictory requirements in terms of architecture design. However, the proposed architecture lends itself to aggressive voltage scaling for low-power dissipation even under process parameter variations. Under a scaled supply voltage and/or variations in process parameters, any possible delay errors would only appear from the long paths that are less contributive towards PSNR improvement, providing large improvement in power dissipation with small PSNR degradation. Results show that even under large process variation and supply voltage scaling (0.8V), there is a gradual degradation of image quality with considerable power savings (62.8%) for the proposed architecture when compared to existing implementations in 70 nm process technology.
Resumo:
In this paper we propose a design methodology for low-power high-performance, process-variation tolerant architecture for arithmetic units. The novelty of our approach lies in the fact that possible delay failures due to process variations and/or voltage scaling are predicted in advance and addressed by employing an elastic clocking technique. The prediction mechanism exploits the dependence of delay of arithmetic units upon input data patterns and identifies specific inputs that activate the critical path. Under iso-yield conditions, the proposed design operates at a lower scaled down Vdd without any performance degradation, while it ensures a superlative yield under a design style employing nominal supply and transistor threshold voltage. Simulation results show power savings of upto 29%, energy per computation savings of upto 25.5% and yield enhancement of upto 11.1% compared to the conventional adders and multipliers implemented in the 70nm BPTM technology. We incorporated the proposed modules in the execution unit of a five stage DLX pipeline to measure performance using SPEC2000 benchmarks [9]. Maximum area and throughput penalty obtained were 10% and 3% respectively.
Resumo:
A multiuser scheduling multiple-input multiple-output (MIMO) cognitive radio network (CRN) with space-time block coding (STBC) is considered in this paper, where one secondary base station (BS) communicates with one secondary user (SU) selected from K candidates. The joint impact of imperfect channel state information (CSI) in BS → SUs and BS → PU due to channel estimation errors and feedback delay on the outage performance is firstly investigated. We obtain the exact outage probability expressions for the considered network under the peak interference power IP at PU and maximum transmit power Pm at BS which cover perfect/imperfect CSI scenarios in BS → SUs and BS → PU. In addition, asymptotic expressions of outage probability in high SNR region are also derived from which we obtain several important insights into the system design. For example, only with perfect CSIs in BS → SUs, i.e., without channel estimation errors and feedback delay, the multiuser diversity can be exploited. Finally, simulation results confirm the correctness of our analysis.
Resumo:
To evaluate the performance of the co-channel transmission based communication, we propose a new metric for area spectral efficiency (ASE) of interference limited ad-hoc network by assuming that the nodes are randomly distributed according to a Poisson point processes (PPP). We introduce a utility function, U = ASE/delay and derive the optimal ALOHA transmission probability p and the SIR threshold τ that jointly maximize the ASE and minimize the local delay. Finally, numerical results have been conducted to confirm that the joint optimization based on the U metric achieves a significant performance gain compared to conventional systems.