37 resultados para Databases on Properties of Inorganic Materials

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various industrial by-products, such as fly ash, ground granulated blast-furnace slag and silica fume, have been used in concrete to improve its properties. This also enables any environmental issues associated with their disposal. Another material that is available in large quantities and requiring alternative methods of disposal is the Bauxite Refinery Reside (BRR) from the Bayer process used to extract alumina from bauxite. As this is highly caustic and causes many health hazards, Virotec International Ltd. developed a patented technology to convert this into a material that can be used commercially, known as Bauxsol™, for various environmental remediation applications. This use is limited to small quantities of seawater-neutralised BRR and hence an investigation was carried out to establish its potential utilisation as a sand replacement material in concrete. In addition to fresh properties of concrete containing seawater-neutralised BRR up to 20% by mass of Portland cement, mechanical and durability properties were determined. These properties indicated that seawater-neutralised BRR can be used to replace natural sand up to 10% by mass of cement to improve the durability properties of concrete without detrimentally affecting their physical properties. Combining these beneficial effects with environmental remediation applications, it can be concluded that there are specific applications where concretes containing seawater-neutralised BRR could be used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results of an experimental investigation carried out to evaluate the influence of Bauxsol, an artificially neutralised bauxite refinery residue (NBRR), on various properties of cement pastes. It was found that the NBRR does not have any pozzolanic properties and hence cannot be used as a supplementary cementitious material in concrete. In order to evaluate the effect of adding the product to Portland cement (PC) pastes, fresh properties (i.e. standard consistency and slump), setting time and heat of hydration were measured. In addition, its influence on chemical changes and compressive strength was investigated. It was found that the addition of this NBRR resulted in a decrease in compressive strength beyond 7 days. The setting time decreased with an increase in NBRR content in PC pastes. The rate of heat evolution for NBRR pastes was greater than that of the PC pastes, but a corresponding increase in the quantity of calcium hydroxide was not found. Therefore, it was concluded that unidentified hydration products when Bauxsol was used in PC pastes might have been the reason for the decrease in setting times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents studies on the properties of fresh and hardened semilightweight self-consolidating concrete (SLWSCC) mixtures, produced with two types of manufactured coarse lightweight aggregates (LWA) and normal weight sand. The first type, a sintered pulverized fuel ash, was made from an industrial by-product, fly ash, whereas the second one, an expanded clay, was produced from a naturally sourced clay. For all mixtures, normal weight sand was used as a fine fraction of aggregates, and the portland cement was partially replaced with a limestone powder. The SLWSCC was produced with different water presaturation regimes of the LWAs. The desired initial slump-flow spread was set between 700 and 800 mm. The effect of three superplasticizers was evaluated by testing properties of SLWSCC, normal weight SCC, and paste mixtures. Three SCC fresh properties were measured: the slump-flow, the V-funnel flow time, and the J-ring blocking step. Moreover, the slump-flow loss was evaluated. The degree of segregation was assessed in both fresh and hardened states. Additionally, the hardened density and the compressive strengths were tested. All SLWSCC mixtures were produced with a desired range of slump-flow spread and with satisfactory passing ability assessed with the J-ring test. SLWSCCs prepared with the expanded clay LWA were less sensitive to the variation of water presaturation levels and showed lower viscosity than those made with the sintered pulverized fuel ash LWA. Only mixtures containing SP-3 superplasticizer showed acceptable workability loss resistance. The saturated surface-dry density of all of the mixtures varied in a range of 2,025–2,125??kg/m 3 . Mixtures containing 29% of coarse LWAs and 71% of sand (by mass) had 24-h and 28-day compressive strengths above 20 and 40 MPa, respectively, but the mixtures made with the expanded clay were slightly weaker.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(methyl vinyl ether-co-maleic anhydride) formed films from aqueous formulations with characteristics that are ideal as a basis for producing a drug-containing bioadhesive delivery system when plasticized with a monohydroxyl functionalized plasticizer. Hence, films containing a novel plasticizer, tripropylene glycol methyl ether (TPME), maintained their adhesive strength and tensile properties when packaged in aluminized foil for extended periods of time. Films plasticized with commonly used polyhydric alcohols, such as the glycerol in this study, underwent an esterification reaction that led to polymer crosslinking, as shown in NMR studies. These revealed the presence of peaks in the ester/carbonyl region, suggesting that glyceride residue formation had been initiated. Given the polyfunctional nature of glycerol, progressive esterification would result in a polyester network and an accompanying profound alteration in the physical characteristics. Indeed, films became brittle over time with a loss of both the aqueous solubility and bioadhesion to porcine skin. In addition, a swelling index was measurable after 7 days, a property not seen with those films containing TPME. This change in bioadhesive strength and pliability was independent of the packaging conditions, rendering the films that contain glycerol as unsuitable as a basis for topical bioadhesive delivery of drug substances. Consequently, films containing TPME have potential as an alternative formulation strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent experimental measurements of large flexoelectric coefficients in ferroelectric ceramics suggest that strain gradients can affect the polarization and permittivity behaviour of inhomogeneously strained ferroelectrics. Here we present a phenomenological model of the effect of flexoelectricity on the dielectric constant, polarization, Curie temperature (T-C), temperature of maximum dielectric constant (T-m) and temperature of the onset of reversible polarization (T-ferro) for ferroelectric thin films subject to substrate-induced epitaxial strains that are allowed to relax with thickness, and the qualitative and quantitative predictions of the model are compared with experimental results for (Ba0.5Sr0.5)TiO3 thin films on SrRuO3 electrodes. It is shown that flexoelectricity can play an important role in decreasing the maximum dielectric constant of ferroelectric thin films under inhomogeneous in-plane strain, regardless of the sign of the strain gradient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of tacticity on the conformational properties of poly(olefin sulfone)s was studied. Tactic polymers, prepared from racemic thiirane monomers using chiral inititators were compared with atactic polymers prepared by free radical co-polymerisation of the 1-olefin with sulfur dioxide. Analysis of the XRD patterns showed that the tactic polymers formed more ordered structures in the bulk with longer layer spacings, consistent with a model in which their side chains meet at the tips in contrast with the atactic polymers whose side chains interdigitate. 13C MAS nmr experiments suggest that as tacticity increases so too does the proportion of C-S bonds in the gauche conformation, however the proportion of S-C bonds in the trans conformation falls, in contrast to a reported molecular mechanics study. Finally, DSC measurements on the polymers with longer side chains showed the presence of two endotherms on heating, illustrating definite liquid crystalline behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the structural effects produced by the quantization of vibrational degrees of freedom in periodic crystals at zero temperature. To this end we introduce a methodology based on mapping a suitable subspace of the vibrational manifold and solving the Schrödinger equation in it. A number of increasingly accurate approximations ranging from the quasiharmonic approximation (QHA) to the vibrational self-consistent field (VSCF) method and the exact solution are described. A thorough analysis of the approximations is presented for model monatomic and hydrogen-bonded chains, and results are presented for a linear H-F chain where the potential-energy surface is obtained via first-principles electronic structure calculations. We focus on quantum nuclear effects on the lattice constant and show that the VSCF is an excellent approximation, meaning that correlation between modes is not extremely important. The QHA is excellent for covalently bonded mildly anharmonic systems, but it fails for hydrogen-bonded ones. In the latter, the zero-point energy exhibits a nonanalytic behavior at the lattice constant where the H atoms center, which leads to a spurious secondary minimum in the quantum-corrected energy curve. An inexpensive anharmonic approximation of noninteracting modes appears to produce rather good results for hydrogen-bonded chains for small system sizes. However, it converges to the incorrect QHA results for increasing size. Isotope effects are studied for the first-principles H-F chain. We show how the lattice constant and the H-F distance increase with decreasing mass and how the QHA proves to be insufficient to reproduce this behavior.