23 resultados para Data stream mining
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
In the last decade, data mining has emerged as one of the most dynamic and lively areas in information technology. Although many algorithms and techniques for data mining have been proposed, they either focus on domain independent techniques or on very specific domain problems. A general requirement in bridging the gap between academia and business is to cater to general domain-related issues surrounding real-life applications, such as constraints, organizational factors, domain expert knowledge, domain adaption, and operational knowledge. Unfortunately, these either have not been addressed, or have not been sufficiently addressed, in current data mining research and development.Domain-Driven Data Mining (D3M) aims to develop general principles, methodologies, and techniques for modeling and merging comprehensive domain-related factors and synthesized ubiquitous intelligence surrounding problem domains with the data mining process, and discovering knowledge to support business decision-making. This paper aims to report original, cutting-edge, and state-of-the-art progress in D3M. It covers theoretical and applied contributions aiming to: 1) propose next-generation data mining frameworks and processes for actionable knowledge discovery, 2) investigate effective (automated, human and machine-centered and/or human-machined-co-operated) principles and approaches for acquiring, representing, modelling, and engaging ubiquitous intelligence in real-world data mining, and 3) develop workable and operational systems balancing technical significance and applications concerns, and converting and delivering actionable knowledge into operational applications rules to seamlessly engage application processes and systems.
Resumo:
Background. The assembly of the tree of life has seen significant progress in recent years but algae and protists have been largely overlooked in this effort. Many groups of algae and protists have ancient roots and it is unclear how much data will be required to resolve their phylogenetic relationships for incorporation in the tree of life. The red algae, a group of primary photosynthetic eukaryotes of more than a billion years old, provide the earliest fossil evidence for eukaryotic multicellularity and sexual reproduction. Despite this evolutionary significance, their phylogenetic relationships are understudied. This study aims to infer a comprehensive red algal tree of life at the family level from a supermatrix containing data mined from GenBank. We aim to locate remaining regions of low support in the topology, evaluate their causes and estimate the amount of data required to resolve them. Results. Phylogenetic analysis of a supermatrix of 14 loci and 98 red algal families yielded the most complete red algal tree of life to date. Visualization of statistical support showed the presence of five poorly supported regions. Causes for low support were identified with statistics about the age of the region, data availability and node density, showing that poor support has different origins in different parts of the tree. Parametric simulation experiments yielded optimistic estimates of how much data will be needed to resolve the poorly supported regions (ca. 103 to ca. 104 nucleotides for the different regions). Nonparametric simulations gave a markedly more pessimistic image, some regions requiring more than 2.8 105 nucleotides or not achieving the desired level of support at all. The discrepancies between parametric and nonparametric simulations are discussed in light of our dataset and known attributes of both approaches. Conclusions. Our study takes the red algae one step closer to meaningful inclusion in the tree of life. In addition to the recovery of stable relationships, the recognition of five regions in need of further study is a significant outcome of this work. Based on our analyses of current availability and future requirements of data, we make clear recommendations for forthcoming research.
Resumo:
Recent years have witnessed an incredibly increasing interest in the topic of incremental learning. Unlike conventional machine learning situations, data flow targeted by incremental learning becomes available continuously over time. Accordingly, it is desirable to be able to abandon the traditional assumption of the availability of representative training data during the training period to develop decision boundaries. Under scenarios of continuous data flow, the challenge is how to transform the vast amount of stream raw data into information and knowledge representation, and accumulate experience over time to support future decision-making process. In this paper, we propose a general adaptive incremental learning framework named ADAIN that is capable of learning from continuous raw data, accumulating experience over time, and using such knowledge to improve future learning and prediction performance. Detailed system level architecture and design strategies are presented in this paper. Simulation results over several real-world data sets are used to validate the effectiveness of this method.
Resumo:
We conducted data-mining analyses of genome wide association (GWA) studies of the CATIE and MGS-GAIN datasets, and found 13 markers in the two physically linked genes, PTPN21 and EML5, showing nominally significant association with schizophrenia. Linkage disequilibrium (LD) analysis indicated that all 7 markers from PTPN21 shared high LD (r(2)>0.8), including rs2274736 and rs2401751, the two non-synonymous markers with the most significant association signals (rs2401751, P=1.10 × 10(-3) and rs2274736, P=1.21 × 10(-3)). In a meta-analysis of all 13 replication datasets with a total of 13,940 subjects, we found that the two non-synonymous markers are significantly associated with schizophrenia (rs2274736, OR=0.92, 95% CI: 0.86-0.97, P=5.45 × 10(-3) and rs2401751, OR=0.92, 95% CI: 0.86-0.97, P=5.29 × 10(-3)). One SNP (rs7147796) in EML5 is also significantly associated with the disease (OR=1.08, 95% CI: 1.02-1.14, P=6.43 × 10(-3)). These 3 markers remain significant after Bonferroni correction. Furthermore, haplotype conditioned analyses indicated that the association signals observed between rs2274736/rs2401751 and rs7147796 are statistically independent. Given the results that 2 non-synonymous markers in PTPN21 are associated with schizophrenia, further investigation of this locus is warranted.
Resumo:
We describe an approach aimed at addressing the issue of joint exploitation of control (stream) and data parallelism in a skeleton based parallel programming environment, based on annotations and refactoring. Annotations drive efficient implementation of a parallel computation. Refactoring is used to transform the associated skeleton tree into a more efficient, functionally equivalent skeleton tree. In most cases, cost models are used to drive the refactoring process. We show how sample use case applications/kernels may be optimized and discuss preliminary experiments with FastFlow assessing the theoretical results. © 2013 Springer-Verlag.
Resumo:
The study outlined in Testing Tidal Turbines Part 1 explains the variation in performance between turbines operating in steady and turbulent flow conditions. However, the impact of turbulence on devices is generally not well understood. Furthermore, the turbulence characteristics of high velocity marine currents have not been extensively studied. Therefore, knowledge of their characteristics must be expanded and methodologies to predict the impact of the characteristics on devices developed and improved. This study examines the measurement of tidal currents at a site used for testing of medium scale tidal turbines. The data being discussed was collected with a point velocimeter (ADV). The processing procedures implemented are discussed and the resulting estimated turbulence spectra and turbulence intensities are presented. The results contribute to the improvement of knowledge regarding tidal current characteristics. This will be fundamental to the optimisation of the design and operation of tidal stream devices.
Resumo:
The adulteration of extra virgin olive oil with other vegetable oils is a certain problem with economic and health consequences. Current official methods have been proved insufficient to detect such adulterations. One of the most concerning and undetectable adulterations with other vegetable oils is the addition of hazelnut oil. The main objective of this work was to develop a novel dimensionality reduction technique able to model oil mixtures as a part of an integrated pattern recognition solution. This final solution attempts to identify hazelnut oil adulterants in extra virgin olive oil at low percentages based on spectroscopic chemical fingerprints. The proposed Continuous Locality Preserving Projections (CLPP) technique allows the modelling of the continuous nature of the produced in house admixtures as data series instead of discrete points. This methodology has potential to be extended to other mixtures and adulterations of food products. The maintenance of the continuous structure of the data manifold lets the better visualization of this examined classification problem and facilitates a more accurate utilisation of the manifold for detecting the adulterants.
Resumo:
In this paper we propose a graph stream clustering algorithm with a unied similarity measure on both structural and attribute properties of vertices, with each attribute being treated as a vertex. Unlike others, our approach does not require an input parameter for the number of clusters, instead, it dynamically creates new sketch-based clusters and periodically merges existing similar clusters. Experiments on two publicly available datasets reveal the advantages of our approach in detecting vertex clusters in the graph stream. We provide a detailed investigation into how parameters affect the algorithm performance. We also provide a quantitative evaluation and comparison with a well-known offline community detection algorithm which shows that our streaming algorithm can achieve comparable or better average cluster purity.
Resumo:
Promoter hypermethylation is central in deregulating gene expression in cancer. Identification of novel methylation targets in specific cancers provides a basis for their use as biomarkers of disease occurrence and progression. We developed an in silico strategy to globally identify potential targets of promoter hypermethylation in prostate cancer by screening for 5' CpG islands in 631 genes that were reported as downregulated in prostate cancer. A virtual archive of 338 potential targets of methylation was produced. One candidate, IGFBP3, was selected for investigation, along with glutathione-S-transferase pi (GSTP1), a well-known methylation target in prostate cancer. Methylation of IGFBP3 was detected by quantitative methylation-specific PCR in 49/79 primary prostate adenocarcinoma and 7/14 adjacent preinvasive high-grade prostatic intraepithelial neoplasia, but in only 5/37 benign prostatic hyperplasia (P < 0.0001) and in 0/39 histologically normal adjacent prostate tissue, which implies that methylation of IGFBP3 may be involved in the early stages of prostate cancer development. Hypermethylation of IGFBP3 was only detected in samples that also demonstrated methylation of GSTP1 and was also correlated with Gleason score > or =7 (P=0.01), indicating that it has potential as a prognostic marker. In addition, pharmacological demethylation induced strong expression of IGFBP3 in LNCaP prostate cancer cells. Our concept of a methylation candidate gene bank was successful in identifying a novel target of frequent hypermethylation in early-stage prostate cancer. Evaluation of further relevant genes could contribute towards a methylation signature of this disease.