46 resultados para DNA binding modes

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The substituted tris(bipyridine)ruthenium(II) complexes {[Ru(bpy)(2)(4,4'-bbob)](2+) and [Ru(bpy)(2)(5,5'-bbob)](2+) [where bpy = 2,2'-bipyridine and bbob = bis(benzoxazol-2-yl)-2,2'-bipyridine] have been prepared and compared to the previously studied complex [Ru(bpy)(2)(4,4'-bbtb)](2+) [where bbtb = bis(benzothiazol-2-yl)-2,2'-bipyridine]. From the UV/VIS titration studies, Delta-[Ru(bpy)(2)(4,4'bbob)](2+) displays a stronger association than the Lambda-isomer with calf-thymus DNA (ct-DNA). For [Ru(bpy)(2)(5,5'-bbob)](2+), there appears to be minimal interaction with ct-DNA. The results of fluorescence titration studies suggest that [Ru(bpy)(2)(4,4'-bbob)](2+) gives an increase in emission intensity with increasing ct-DNA concentrations, with an enantiopreference for the A isomer, confirmed by membrane dialysis studies. The fluorescent intercalation displacement studies revealed that [Ru(bpy)(2)(4,4'-bbob)](2+) and [Ru.(bpy)(2)(5,5'bbob)](2+) display a preference for more open DNA structures such as bulge and hairpin sequences. While Delta-[Ru(bpy)(2)(4,4'-bbtb)](2+) has shown the most significant affinity for all the oligonucleotides sequences screened in previous studies, it is the A isomer of the comparable benzoxazole ruthenium(II) complex (Delta-[Ru(bpy)(2)(4,4'-bbob)](2+)) that preferentially binds to DNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HIV-1 integrase (IN) has become an attractive target since drug resistance against HIV-1 reverse transcriptase (RT) and protease (PR) has appeared. Diketo acid (DKA) inhibitors are potent and selective inhibitors of HIV-1 IN: however the action mechanism is not well understood. Here, to study the inhibition mechanism of DKAs we performed 10 ns comparative molecular dynamics simulations on HIV-1 IN bound with three most representative DMA inhibitors: Shionogi inhibitor, S-1360 and two Merck inhibitors L-731,988 and L-708,906. Our simulations show that the acidic part of S-1360 formed salt bridge and cation-pi interactions with Lys159. In addition, the catalytic Glu152 in S-1360 was pushed away from the active site to form an ion-pair interaction with Arg199. The Merck inhibitors can maintain either one or both of these ion-pair interaction features. The difference in potencies of the DMA inhibitors is thus attributed to the different binding modes at the catalytic site. Such structural information at atomic level, not only demonstrates the action modes of DMA inhibitors but also provides a novel starting point for structural-based design of HIV-1 IN inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-strand DNA (ssDNA)-binding proteins (SSBs) are ubiquitous and essential for a wide variety of DNA metabolic processes, including DNA replication, recombination, DNA damage detection and repair. SSBs have multiple roles in binding and sequestering ssDNA, detecting DNA damage, stimulating nucleases, helicases and strand-exchange proteins, activating transcription and mediating protein-protein interactions. In eukaryotes, the major SSB, replication protein A (RPA), is a heterotrimer. Here we describe a second human SSB (hSSB1), with a domain organization closer to the archaeal SSB than to RPA. Ataxia telangiectasia mutated (ATM) kinase phosphorylates hSSB1 in response to DNA double-strand breaks (DSBs). This phosphorylation event is required for DNA damage-induced stabilization of hSSB1. Upon induction of DNA damage, hSSB1 accumulates in the nucleus and forms distinct foci independent of cell-cycle phase. These foci co-localize with other known repair proteins. In contrast to RPA, hSSB1 does not localize to replication foci in S-phase cells and hSSB1 deficiency does not influence S-phase progression. Depletion of hSSB1 abrogates the cellular response to DSBs, including activation of ATM and phosphorylation of ATM targets after ionizing radiation. Cells deficient in hSSB1 exhibit increased radiosensitivity, defective checkpoint activation and enhanced genomic instability coupled with a diminished capacity for DNA repair. These findings establish that hSSB1 influences diverse endpoints in the cellular DNA damage response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schistosomiasis is a chronically debilitating helminth infection with a significant socio-economic and public health impact. Accurate diagnostics play a pivotal role in achieving current schistosomiasis control and elimination goals. However, many of the current diagnostic procedures, which rely on detection of schistosome eggs, have major limitations including lack of accuracy and the inability to detect pre-patent infections. DNA-based detection methods provide a viable alternative to the current tests commonly used for schistosomiasis diagnosis. Here we describe the optimisation of a novel droplet digital PCR (ddPCR) duplex assay for the diagnosis of Schistosoma japonicum infection which provides improved detection sensitivity and specificity. The assay involves the amplification of two specific and abundant target gene sequences in S. japonicum; a retrotransposon (SjR2) and a portion of a mitochondrial gene (nad1). The assay detected target sequences in different sources of schistosome DNA isolated from adult worms, schistosomules and eggs, and exhibits a high level of specificity, thereby representing an ideal tool for the detection of low levels of parasite DNA in different clinical samples including parasite cell free DNA in the host circulation and other bodily fluids. Moreover, being quantitative, the assay can be used to determine parasite infection intensity and, could provide an important tool for the detection of low intensity infections in low prevalence schistosomiasis-endemic areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resonance Raman (RR) spectroscopy has been used to probe the interaction between dipyridophenazine (dppz) complexes of ruthenium(II), [Ru(L)(2)(dppz)](2+) (L = 1,10-phenanthroline (1) and 2,2-bipyridyl (2)), and calf-thymus DNA. Ground electronic state RR spectra at selected probe wavelengths reveal enhancement patterns which reflect perturbation of the dppz-centered electronic transitions in the UV-vis spectra in the presence of DNA. Comparison of the RR spectra recorded of the short-lived MLCT excited states of both complexes in aqueous solution with those of the longer-lived states of the complexes in the DNA environment reveals changes to excited state modes, suggesting perturbation of electronic transitions of the dppz ligand in the excited state as a result of intercalation. The most prominent feature, at 1526 cm(-1), appears in the spectra of both 1 and 2 and is a convenient marker band for intercalation. For 1, the excited state studies have been extended to the A and A enantiomers. The marker band appears at the same frequency for both but with different relative intensities. This is interpreted as reflecting the distinctive response of the enantiomers to the chiral environment of the DNA binding sites. The results, together with some analogous data for other potentially intercalating complexes, are considered in relation to the more general application of time-resolved RR spectroscopy for investigation of intercalative interactions of photoexcited metal complexes with DNA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Signal Transducers and Activators of Transcription (STAT) proteins are a group of latent cytoplasmic transcription factors involved in cytokine signaling. STAT3 is a member of the STAT family and is expressed at elevated levels in a large number of diverse human cancers and is now a validated target for anticancer drug discovery.. Understanding the dynamics of the STAT3 dimer interface, accounting for both protein-DNA and protein-protein interactions, with respect to the dynamics of the latent unphosphorylated STAT3 monomer, is important for designing potential small-molecule inhibitors of the activated dimer. Molecular dynamics (MD) simulations have been used to study the activated STAT3 homodimer:DNA complex and the latent unphosphorylated STAT3 monomer in an explicit water environment. Analysis of the data obtained from MD simulations over a 50 ns time frame has suggested how the transcription factor interacts with DNA, the nature of the conformational changes, and ways in which function may be affected. Examination of the dimer interface, focusing on the protein-DNA interactions, including involvement of water molecules, has revealed the key residues contributing to the recognition events involved in STAT3 protein-DNA interactions. This has shown that the majority of mutations in the DNA-binding domain are found at the protein-DNA interface. These mutations have been mapped in detail and related to specific protein-DNA contacts. Their structural stability is described, together with an analysis of the model as a starting-point for the discovery of novel small-molecule STAT3 inhibitors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Homology modeling was used to build 3D models of the N-methyl-D-aspartate (NMDA) receptor glycine binding site on the basis of an X-ray structure of the water-soluble AMPA-sensitive receptor. The docking of agonists and antagonists to these models was used to reveal binding modes of ligands and to explain known structure-activity relationships. Two types of quantitative models, 3D-QSAR/CoMFA and a regression model based on docking energies, were built for antagonists (derivatives of 4-hydroxy-2-quinolone, quinoxaline-2,3-dione, and related compounds). The CoMFA steric and electrostatic maps were superimposed on the homology-based model, and a close correspondence was marked. The derived computational models have permitted the evaluation of the structural features crucial for high glycine binding site affinity and are important for the design of new ligands.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present new homology-based models of the glutamate binding site (in closed and open forms) of the NMDA receptor NR2B subunit derived from X-ray structures of the water soluble AMPA sensitive glutamate receptor. The models were used for revealing binding modes of agonists and competitive antagonists, as well as for rationalizing known experimental facts concerning structure-activity relationships: (i) the switching between the agonist and the antagonist modes of action upon lengthening the chain between the distal acidic group and the amino acid moiety, (ii) the preference for the methyl group attached to the a-amino group of ligands, (iii) the preference for the D-configuration of agonists and antagonists, and (iv) the existence of "superacidic" agonists.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cytogenetic analysis in myeloma reveals marked chromosomal instability. Both widespread genomic alterations and evidence of aberrant class switch recombination, the physiological process that regulates maturation of the antibody response, implicate the DNA repair pathway in disease pathogenesis. We therefore assessed 27 SNPs in three genes (XRCC3, XRCC4 and XRCC5) central to DNA repair in patients with myeloma and controls from the EpiLymph study and from an Irish hospital registry (n = 306 cases, 263 controls). For the haplotype-tagging SNP (htSNP) rs963248 in XRCC4, Allele A was significantly more frequent in cases than in controls (86.4 versus 80.8%; odds ratio 1.51; 95% confidence interval 1.10-2.08; P = 0.0133), as was the AA genotype (74 versus 65%) (P = 0.026). Haplotype analysis was performed using Unphased for rs963248 in combination with additional SNPs in XRCC4. The strongest evidence of association came from the A-T haplotype from rs963248-rs2891980 (P = 0.008). For XRCC5, the genotype GG from rs1051685 was detected in 10 cases from different national populations but in only one control (P = 0.015). This SNP is located in the 3'-UTR of XRCC5. Overall, these data provide support for the hypothesis that common variation in the genes encoding DNA repair proteins contributes to susceptibility to myeloma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: A critical event in the pathogenesis of diabetic retinopathy is the inappropriate adherence of leukocytes to the retinal capillaries. Advanced glycation end-products (AGEs) are known to play a role in chronic inflammatory processes, and the authors postulated that these adducts may play a role in promoting pathogenic increases in proinflammatory pathways within the retinal microvasculature. METHODS: Retinal microvascular endothelial cells (RMECs) were treated with glycoaldehyde-modified albumin (AGE-Alb) or unmodified albumin (Alb). NFkappaB DNA binding was measured by electromobility shift assay (EMSA) and quantified with an ELISA: In addition, the effect of AGEs on leukocyte adhesion to endothelial cell monolayers was investigated. Further studies were performed in an attempt to confirm that this was AGE-induced adhesion by co-incubation of AGE-treated cells with soluble receptor for AGE (sRAGE). Parallel in vivo studies of nondiabetic mice assessed the effect of intraperitoneal delivery of AGE-Alb on ICAM-1 mRNA expression, NFkappaB DNA-binding activity, leukostasis, and blood-retinal barrier breakdown. RESULTS: Treatment with AGE-Alb significantly enhanced the DNA-binding activity of NFkappaB (P = 0.0045) in retinal endothelial cells (RMECs) and increased the adhesion of leukocytes to RMEC monolayers (P = 0.04). The latter was significantly reduced by co-incubation with sRAGE (P <0.01). Mice infused with AGE-Alb demonstrated a 1.8-fold increase in ICAM-1 mRNA when compared with control animals (P <0.001, n = 20) as early as 48 hours, and this response remained for 7 days of treatment. Quantification of retinal NFkappaB demonstrated a threefold increase with AGE-Alb infusion in comparison to control levels (AGE Alb versus Alb, 0.23 vs. 0.076, P <0.001, n = 10 mice). AGE-Alb treatment of mice also caused a significant increase in leukostasis in the retina (AGE-Alb versus Alb, 6.89 vs. 2.53, n = 12, P <0.05) and a statistically significant increase in breakdown of the blood-retinal barrier (AGE Alb versus Alb, 8.2 vs. 1.6 n = 10, P <0.001). CONCLUSIONS: AGEs caused upregulation of NFkappaB in the retinal microvascular endothelium and an AGE-specific increase in leukocyte adhesion in vitro was also observed. In addition, increased leukocyte adherence in vivo was demonstrated that was accompanied by blood-retinal barrier dysfunction. These findings add further evidence to the thinking that AGEs may play an important role in the pathogenesis of diabetic retinopathy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Osteopontin is a secreted, integrin-binding and phosphorylated acidic glycoprotein, which has an important role in tumour progression. We have shown that Wnt, Ets, AP-1, c-jun and beta-catenin/Lef-1/Tcf-1 stimulates OPN transcription in rat mammary carcinoma cells by binding to a specific promoter sequence. However, co-repressors of OPN have not been identified. In this study, we have used the bacterial two-hybrid system to isolate cDNA-encoding proteins that bind to OPN and modulate its role in malignant transformation. Using this approach we isolated interferon-induced transmembrane protein 3 gene (IFITM3) as a potential protein partner. We show that IFITM3 and OPN interact in vitro and in vivo and that IFITM3 reduces osteopontin (OPN) mRNA expression, possibly by affecting OPN mRNA stability. Stable transfection of IFITM3 inhibits OPN, which mediates anchorage-independent growth, cell adhesion and cell invasion. Northern blot analysis revealed an inverse mRNA expression pattern of IFITM3 and OPN in human mammary cell lines. Inhibition of IFITM3 by antisense RNA promoted OPN protein expression, enhanced cell invasion by parental benign non-invasive Rama 37 cells, indicating that the two proteins interact functionally as well. We also identified an IFITM3 DNA-binding domain, which interacts with OPN, deletion of which abolished its inhibitive effect on OPN. This work has shown for the first time that IFITM3 physically interacts with OPN and reduces OPN mRNA expression, which mediates cell adhesion, cell invasion, colony formation in soft agar and metastasis in a rat model system. Oncogene (2010) 29, 752-762; doi: 10.1038/onc.2009.379; published online 9 November 2009