28 resultados para Cortical excitability

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The tendency for contractions of muscles in the upper limb to give rise to increases in the excitability of corticospinal projections to the homologous muscles of the opposite limb is well known. Although the suppression of this tendency is integral to tasks of daily living, its exploitation may prove to be critical in the rehabilitation of acquired hemiplegias. Transcranial direct current (DC) stimulation induces changes in cortical excitability that outlast the period of application. We present evidence that changes in the reactivity of the corticospinal pathway induced by DC stimulation of the motor cortex interact systematically with those brought about by contraction of the muscles of the ipsilateral limb. During the application of flexion torques (up to 50% of maximum) applied at the left wrist, motor evoked potentials (MEPs) were evoked in the quiescent muscles of the right arm by magnetic stimulation of the left motor cortex (M1). The MEPs were obtained prior to and following 10 min of anodal, cathodal or sham DC stimulation of left M1. Cathodal stimulation counteracted increases in the crossed-facilitation of projections to the (right) wrist flexors that otherwise occurred as a result of repeated flexion contractions at the left wrist. In addition, cathodal stimulation markedly decreased the excitability of corticospinal projections to the wrist extensors of the right limb. Thus changes in corticospinal excitability induced by DC stimulation can be shaped (i.e. differentiated by muscle group) by focal contractions of muscles in the limb ipsilateral to the site of stimulation. (C) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

‘Temporally urgent’ reactions are extremely rapid, spatially precise movements that are evoked following discrete stimuli. The involvement of primary motor cortex (M1) and its relationship to stimulus intensity in such reactions is not well understood. Continuous theta burst stimulation (cTBS) suppresses focal regions of the cortex and can assess the involvement of motor cortex in speed of processing. The primary objective of this study was to explore the involvement of M1 in speed of processing with respect to stimulus intensity. Thirteen healthy young adults participated in this experiment. Behavioral testing consisted of a simple button press using the index finger following median nerve stimulation of the opposite limb, at either high or low stimulus intensity. Reaction time was measured by the onset of electromyographic activity from the first dorsal interosseous (FDI) muscle of each limb. Participants completed a 30 min bout of behavioral testing prior to, and 15 min following, the delivery of cTBS to the motor cortical representation of the right FDI. The effect of cTBS on motor cortex was measured by recording the average of 30 motor evoked potentials (MEPs) just prior to, and 5 min following, cTBS. Paired t-tests revealed that, of thirteen participants, five demonstrated a significant attenuation, three demonstrated a significant facilitation and five demonstrated no significant change in MEP amplitude following cTBS. Of the group that demonstrated attenuated MEPs, there was a biologically significant interaction between stimulus intensity and effect of cTBS on reaction time and amplitude of muscle activation. This study demonstrates the variability of potential outcomes associated with the use of cTBS and further study on the mechanisms that underscore the methodology is required. Importantly, changes in motor cortical excitability may be an important determinant of speed of processing following high intensity stimulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We explored the brain's ability to quickly prevent a pre-potent but unwanted motor response. To address this, transcranial magnetic stimulation was delivered over the motor cortex (hand representation) to probe excitability changes immediately after somatosensory cues prompted subjects to either move as fast as possible or withhold movement. Our results showed a difference in motor cortical excitability 90 ms post-stimulus contingent on cues to either promote or prevent movement. We suggest that our study design emphasizing response speed coupled with well-defined early probes allowed us to extend upon similar past investigations into the timing of response inhibition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Consideration was given to means of increasing the reliability and muscle specificity of paired associative stimulation (PAS) by utilising the phenomenon of crossed-facilitation. Eight participants completed three separate sessions: isometric flexor contractions of the left wrist at 20% of maximum voluntary contraction (MVC) simultaneously with PAS (20s intervals; 14 min duration) delivered at the right median nerve and left primary motor cortex (MI); isometric contractions at 20% of MVC: and PAS only ( 14 min). Eight further participants completed two sessions of longer duration PAS (28 min): either alone or in conjunction with flexion contractions of the left wrist. Thirty motor potentials (MEPs) were evoked in the right flexor (rFCR) and extensor (rECR) carpi radialis muscles by magnetic stimulation of left M1 Prior to the interventions, immediately post-intervention, and 10 min post-intervention. Both 14 and 28 min of combined PAS and (left wrist flexion) contractions resulted in reliable increases in rFCR MEP amplitude, which were not present in rECR. In the PAS only conditions, 14 min of stimulation gave rise to unreliable increases in MEP amplitudes in rFCR and rECR, whereas 28 min of PAS induced small (unreliable) changes only for rFCR. These results support the conclusion that changes in the excitability of the corticospinal pathway induced by PAS interact with those associated with contraction of the muscles ipsilateral to the site of cortical stimulation. Furthermore, focal contractions applied by the opposite limb increase the extent and muscle specificity of the induced changes in excitability associated with PAS. (C) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modulations in the excitability of spinal reflex pathways during passive rhythmic movements of the lower limb have been demonstrated by a number of previous studies [4]. Less emphasis has been placed on the role of supraspinal pathways during passive movement, and on tasks involving the upper limb. In the present study, transcranial magnetic stimulation (TMS) was delivered to subjects while undergoing passive flexion-extension movements of the contralateral wrist. Motor evoked potentials (MEPs) of flexor carpi radialis (FCR) and abductor pollicus brevis (APB) muscles were recorded. Stimuli were delivered in eight phases of the movement cycle during three different frequencies of movement. Evidence of marked modulations in pathway excitability was found in the MEP amplitudes of the FCR muscle, with responses inhibited and facilitated from static values in the extension and flexion phases, respectively. The results indicated that at higher frequencies of movement there was greater modulation in pathway excitability. Paired-pulse TMS (sub-threshold conditioning) at short interstimulus intervals revealed modulations in the extent of inhibition in MEP amplitude at high movement frequencies. In the APE muscle, there was some evidence of phasic modulations of response amplitude, although the effects were less marked than those observed in FCR. It is speculated that these modulatory effects are mediated via Ia afferent pathways and arise as a consequence of the induced forearm muscle shortening and lengthening. Although the level at which this input influences the corticomotoneuronal pathway is difficult to discern, a contribution from cortical regions is suggested. (C) 2001 Published by Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been argued that the variation in brain activity that occurs when observing another person reflects a representation of actions that is indivisible, and which plays out in full once the intent of the actor can be discerned. We used transcranial magnetic stimulation to probe the excitability of corticospinal projections to 2 intrinsic hand muscles while motions to reach and grasp an object were observed. A symbolic cue either faithfully indicated the required final orientation of the object and thus the nature of the grasp that was required, or was in conflict with the movement subsequently displayed. When the cue was veridical, modulation of excitability was in accordance with the functional role of the muscles in the action observed. If however the cue had indicated that the alternative grasp would be required, modulation of output to first dorsal interosseus was consistent with the action specified, rather than the action observed-until the terminal phase of the motion sequence during which the object was seen lifted. Modulation of corticospinal output during observation is thus segmented-it progresses initially in accordance with the action anticipated, and if discrepancies are revealed by visual input, coincides thereafter with that of the action seen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many types of non-invasive brain stimulation alter corticospinal excitability (CSE). Paired associative stimulation (PAS) has attracted particular attention as its effects ostensibly adhere to Hebbian principles of neural plasticity. In prototypical form, a single electrical stimulus is directed to a peripheral nerve in close temporal contiguity with transcranial magnetic stimulation delivered to the contralateral primary motor cortex (M1). Repeated pairing of the two discrete stimulus events (i.e. association) over an extended period either increases or decreases the excitability of corticospinal projections from M1, contingent on the interstimulus interval. We studied a novel form of associative stimulation, consisting of brief trains of peripheral afferent stimulation paired with short bursts of high frequency (≥80 Hz) transcranial alternating current stimulation (tACS) over contralateral M1. Elevations in the excitability of corticospinal projections to the forearm were observed for a range of tACS frequency (80, 140 and 250 Hz), current (1, 2 and 3 mA) and duration (500 and 1000 ms) parameters. The effects were at least as reliable as those brought about by PAS or transcranial direct current stimulation. When paired with tACS, muscle tendon vibration also induced elevations of CSE. No such changes were brought about by the tACS or peripheral afferent stimulation alone. In demonstrating that associative effects are expressed when the timing of the peripheral and cortical events is not precisely circumscribed, these findings suggest that multiple cellular pathways may contribute to a long term potentiation-type response. Their relative contributions will differ depending on the nature of the induction protocol that is used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Augmented visual feedback can have a profound bearing on the stability of bimanual coordination. Indeed, this has been used to render tractable the study of patterns of coordination that cannot otherwise be produced in a stable fashion. In previous investigations (Carson et al. 1999), we have shown that rhythmic movements, brought about by the contraction of muscles on one side of the body, lead to phase-locked changes in the excitability of homologous motor pathways of the opposite limb. The present study was conducted to assess whether these changes are influenced by the presence of visual feedback of the moving limb. Eight participants performed rhythmic flexion-extension movements of the left wrist to the beat of a metronome (1.5 Hz). In 50% of trials, visual feedback of wrist displacement was provided in relation to a target amplitude, defined by the mean movement amplitude generated during the immediately preceding no feedback trial. Motor potentials (MEPs) were evoked in the quiescent muscles of the right limb by magnetic stimulation of the left motor cortex. Consistent with our previous observations, MEP amplitudes were modulated during the movement cycle of the opposite limb. The extent of this modulation was, however, smaller in the presence of visual feedback of the moving limb (FCR omega(2) =0.41; ECR omega(2)=0.29) than in trials in which there was no visual feedback (FCR omega(2)=0.51; ECR omega(2)=0.48). In addition, the relationship between the level of FCR activation and the excitability of the homologous corticospinal pathway of the opposite limb was sensitive to the vision condition; the degree of correlation between the two variables was larger when there was no visual feedback of the moving limb. The results of the present study support the view that increases in the stability of bimanual coordination brought about by augmented feedback may be mediated by changes in the crossed modulation of excitability in homologous motor pathways.