122 resultados para Cooperative societies.

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports on the development and systematic evaluation of an innovative early years programme aimed at encouraging young children to respect differences within a deeply-divided society that is emerging out of a prolonged period of violent conflict. The programme, the Media Initiative for Children – Northern Ireland, has been the product of a partnership between an US-based organisation (the Peace Initiatives Institute) and NIPPA – The Early Years Organisation and has been supported by academic research and the efforts of a range of voluntary and statutory organisations. It has attempted to encourage young children to value diversity and be more inclusive of those who are different to themselves through the use of short cartoons designed for and broadcast on television as well as specially-prepared curricular materials for use in pre-school settings. To date the programme has been delivered through 200 settings to approximately 3,500 pre-school children across Northern Ireland. This article describes how the programme was developed and implemented as well as the rigorous approach taken to evaluating its effects on young children’s attitudes and awareness. Key lessons from this are identified and discussed in relation to future work in this area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A spectrally efficient strategy is proposed for cooperative multiple access (CMA) channels in a centralized communication environment with $N$ users. By applying superposition coding, each user will transmit a mixture containing its own information as well as the other users', which means that each user shares parts of its power with the others. The use of superposition coding in cooperative networks was first proposed in , which will be generalized to a multiple-user scenario in this paper. Since the proposed CMA system can be seen as a precoded point-to-point multiple-antenna system, its performance can be best evaluated using the diversity-multiplexing tradeoff. By carefully categorizing the outage events, the diversity-multiplexing tradeoff can be obtained, which shows that the proposed cooperative strategy can achieve larger diversity/multiplexing gain than the compared transmission schemes at any diversity/multiplexing gain. Furthermore, it is demonstrated that the proposed strategy can achieve optimal tradeoff for multiplexing gains $0leq r leq 1$ whereas the compared cooperative scheme is only optimal for $0leq r leq ({1}/{N})$. As discussed in the paper, such superiority of the proposed CMA system is due to the fact that the relaying transmission does not consume extra channel use and, hence, the deteriorating effect of cooperative communication on the data rate is effectively limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clustering analysis of data from DNA microarray hybridization studies is an essential task for identifying biologically relevant groups of genes. Attribute cluster algorithm (ACA) has provided an attractive way to group and select meaningful genes. However, ACA needs much prior knowledge about the genes to set the number of clusters. In practical applications, if the number of clusters is misspecified, the performance of the ACA will deteriorate rapidly. In fact, it is a very demanding to do that because of our little knowledge. We propose the Cooperative Competition Cluster Algorithm (CCCA) in this paper. In the algorithm, we assume that both cooperation and competition exist simultaneously between clusters in the process of clustering. By using this principle of Cooperative Competition, the number of clusters can be found in the process of clustering. Experimental results on a synthetic and gene expression data are demonstrated. The results show that CCCA can choose the number of clusters automatically and get excellent performance with respect to other competing methods.