52 resultados para Conversion efficiency of N-fertilizer on forage
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Research on fusion fast ignition (FI) initiated by laser-driven ion beams has made substantial progress in the last years. Compared with electrons, FI based on a beam of quasi-monoenergetic ions has the advantage of a more localized energy deposition, and stiffer particle transport, bringing the required total beam energy close to the theoretical minimum. Due to short pulse laser drive, the ion beam can easily deliver the 200 TW power required to ignite the compressed D-T fuel. In integrated calculations we recently simulated ion-based FI targets with high fusion gain targets and a proof of principle experiment [1]. These simulations identify three key requirements for the success of ion-driven fast ignition (IFI): (1) the generation of a sufficiently high-energetic ion beam (approximate to 400-500 MeV for C), with (2) less than 20% energy spread at (3) more than 10% conversion efficiency of laser to beam energy. Here we present for the first time new experimental results, demonstrating all three parameters in separate experiments. Using diamond nanotargets and ultrahigh contrast laser pulses we were able to demonstrate >500 MeV carbon ions, as well as carbon pulses with Delta E/E
Resumo:
In this paper, we propose the return-to-cost-ratio (RCR) as an alternative approach to the analysis of operational eco-efficiency of companies based on the notion of opportunity costs. RCR helps to overcome two fundamental deficits of existing approaches to eco-efficiency. (1) It translates eco-efficiency into managerial terms by applying the well-established notion of opportunity costs to eco-efficiency analysis. (2) RCR allows to identify and quantify the drivers behind changes in corporate eco-efficiency. RCR is applied to the analysis of the CO2-efficiency of German companies in order to illustrate its usefulness for a detailed analysis of changes in corporate eco-efficiency as well as for the development of effective environmental strategies. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Motivation: Many biomedical experiments are carried out by pooling individual biological samples. However, pooling samples can potentially hide biological variance and give false confidence concerning the data significance. In the context of microarray experiments for detecting differentially expressed genes, recent publications have addressed the problem of the efficiency of sample pooling, and some approximate formulas were provided for the power and sample size calculations. It is desirable to have exact formulas for these calculations and have the approximate results checked against the exact ones. We show that the difference between the approximate and the exact results can be large.
Resumo:
When the dominant mechanism for ion acceleration is the laser radiation pressure, the conversion efficiency of the laser energy into the energy of relativistic ions may be very high. Stability analysis of a thin plasma layer accelerated by the radiation pressure shows that Raleigh-Taylor instability may enhance plasma inhomogeneity. In the linear stage of instability, the plasma layer decays into separate bunches, which are accelerated by the radiation pressure similarly to clusters accelerated under the action of an electromagnetic wave. The energy and luminosity of an ion beam accelerated in the radiation-pressure-dominated regime are calculated.
Resumo:
The sonochemical oxidation efficiency (eta(ox)) of a commercial titanium alloy ultrasound horn has been measured using potassium iodide as a dosimeter at its main resonance frequency (20 kHz) and two higher resonance frequencies (41 and 62 kHz). Narrow power and frequency ranges have been chosen to minimise secondary effects such as changing bubble stability, and time available for radical diffusion from the bubble to the liquid. The oxidation efficiency, eta(ox), is proportional to the frequency and to the power transmitted to the liquid (275 mL) in the applied power range (1-6 W) under argon. Luminol radical visualisation measurements show that the radical generation rate increases and a redistribution of radical producing zones is achieved at increasing frequency. Argon, helium, air, nitrogen, oxygen, and carbon dioxide have been used as saturation gases in potassium iodide oxidation experiments. The highest eta(ox) has been observed at 5 W under air at 62 kHz. The presence of carbon dioxide in air gives enhanced nucleation at 41 and 62 kHz and has a strong influence on eta(ox). This is supported by the luminol images, the measured dependence of eta(ox). on input power, and bubble images recorded under carbon dioxide. The results give insight into the interplay between saturation gas and frequency, nucleation, and their effect on eta(ox). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Non-Volatile Memory (NVM) technology holds promise to replace SRAM and DRAM at various levels of the memory hierarchy. The interest in NVM is motivated by the difficulty faced in scaling DRAM beyond 22 nm and, long-term, lower cost per bit. While offering higher density and negligible static power (leakage and refresh), NVM suffers increased latency and energy per memory access. This paper develops energy and performance models of memory systems and applies them to understand the energy-efficiency of replacing or complementing DRAM with NVM. Our analysis focusses on the application of NVM in main memory. We demonstrate that NVM such as STT-RAM and RRAM is energy-efficient for memory sizes commonly employed in servers and high-end workstations, but PCM is not. Furthermore, the model is well suited to quickly evaluate the impact of changes to the model parameters, which may be achieved through optimization of the memory architecture, and to determine the key parameters that impact system-level energy and performance.
Resumo:
This paper examines the efficiency of the 1998 irrigation management reform in the Guanzhong Plain, Shaanxi, China, at farm and canal level. Stochastic frontier analysis is applied to estimate irrigation water use efficiency, based on panel data for 800 farmers, spread over 80 irrigation canals, for the period 1999–2005. Analysis of determinants of water use efficiency shows that at farm level, water price and disclosure are important factors. Compared to the base case of unreformed, management reform has a positive impact with water user association having the largest effect, followed by joint-stock co-operative and private company. The canal model is in line with the farm level model, although estimates are less significant.
Resumo:
The nature of photon interaction and reaction pH can have significant impacts on semiconductor photocatalysis. This paper describes the effect of pH on the photonic efficiency of photocatalytic reactions in the aqueous phase using TiO2 catalysts. The reactor was irradiated using periodic illumination with UV-LEDs through control of the illumination duty cycle (γ) through a series of light and dark times (Ton/Toff). Photonic efficiencies for methyl orange degradation were found to be comparable at high γ irrespective of pH. At lower γ, pH effects on photonic efficiency were very distinct across acidic, neutral and alkaline pH indicating an effect of complementary parameters. The results suggest photonic efficiency is greatest as illumination time, Ton approaches interfacial electron-transfer characteristic time which is within the range of this study or charge-carrier lifetimes upon extrapolation and also when electrostatic attraction between surface-trapped holes, {TiIVOH}ads+ and substrate molecules is strongest.
Resumo:
The use of controlled periodic illumination with UV LEDs for enhancing photonic efficiency of photocatalytic decomposition processes in water has been investigated using methyl orange as a model compound. The impact of the length of light and dark time periods (T ON/T OFF times) on photodegradation and photonic efficiency using a UV LED-illuminated photoreactor has been studied. The results have shown an inverse dependency of the photonic efficiency on duty cycle and a very little effect on T ON or T OFF time periods, indicating no effect of rate-limiting steps through mass diffusion or adsorption/desorption in the reaction. For this reactor, the photonic efficiency under controlled periodic illumination (CPI) matches to that of continuous illumination, for the same average UV light intensities. Furthermore, under CPI conditions, the photonic efficiency is inversely related to the average UV light intensity in the reactor, in the millisecond time regime. This is the first study that has investigated the effect of controlled periodic illumination using ultra band gap UV LED light sources in the photocatalytic destruction of dye compounds using titanium dioxide. The results not only enhance the understanding of the effect of periodic illumination on photocatalytic processes but also provide a greater insight to the potential of these light sources in photocatalytic reactions.
Resumo:
Solar-driven water splitting to produce hydrogen may be an ideal solution for global energy and environment issues. Among the various photocatalytic systems, platinum has been widely used to co-catalyse the reduction of protons in water for hydrogen evolution. However, the undesirable hydrogen oxidation reaction can also be readily catalysed by metallic platinum, which limits the solar energy conversion efficiency in artificial photosynthesis. Here we report that the unidirectional suppression of hydrogen oxidation in photocatalytic water splitting can be fulfilled by controlling the valence state of platinum; this platinum-based cocatalyst in a higher oxidation state can act as an efficient hydrogen evolution site while suppressing the undesirable hydrogen back-oxidation. The findings in this work may pave the way for developing other high-efficientcy platinum-based catalysts for photocatalysis, photoelectrochemistry, fuel cells and water-gas shift reactions.