36 resultados para Control-flow
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The application of blown jet vortex generators to control flow separation in a diffuser with an opening angle of 10° has been studied using the computational fluid dynamics (CFD) code Fluent 6™. Experimental data is available for the uncontrolled flow in the diffuser. The section of the duct upstream of the diffuser has a height H equal to 15 mm; its length and breadth are 101H and 41H respectively; the diffuser has an expansion ratio of 4.7:1. Fully developed flow is achieved upstream of the diffuser. Pipes of diameters equal to 1.5%, 2.5% and 5% of H were considered; pitch angle was constant at 45° and yaw angle was fixed at 60°; velocity ratio was varied from 1.7 to 8.0; both co-rotating and counter-rotating arrays were studied. The best results were obtained with a counter-rotating array of generators with a hole diameter of 5% of H and a velocity ratio of 3.7.
Resumo:
The inherent difficulty of thread-based shared-memory programming has recently motivated research in high-level, task-parallel programming models. Recent advances of Task-Parallel models add implicit synchronization, where the system automatically detects and satisfies data dependencies among spawned tasks. However, dynamic dependence analysis incurs significant runtime overheads, because the runtime must track task resources and use this information to schedule tasks while avoiding conflicts and races.
We present SCOOP, a compiler that effectively integrates static and dynamic analysis in code generation. SCOOP combines context-sensitive points-to, control-flow, escape, and effect analyses to remove redundant dependence checks at runtime. Our static analysis can work in combination with existing dynamic analyses and task-parallel runtimes that use annotations to specify tasks and their memory footprints. We use our static dependence analysis to detect non-conflicting tasks and an existing dynamic analysis to handle the remaining dependencies. We evaluate the resulting hybrid dependence analysis on a set of task-parallel programs.
Resumo:
The current understanding of periodic transonic flow is reviewed briefly. The effects of boundary-layer transition, non-adiabatic wall conditions and modifications to the aerofoil surface geometry at the shock interactions on periodic transonic flow are discussed. Through the methods presented, it is proposed that the frequency of periodic motion can be predicted with reasonable accuracy, but there are limitations on the prediction of buffet boundaries associated with periodic transonic flows. Several methods have been proposed by which the periodic motion may be virtually eliminated, most relevantly by altering the position of transition fix, contouring the aerofoils surface or adding a porous surface and a cavity in the region of shock interaction. In addition, it has been shown that heat transfer can have a significant effect on buffet.
Resumo:
Precise control over the interfacial area of aqueous and organic slugs in segmented flow in a microchannel reactor provides an attractive means to optimize the yield and productivity of a phase-transfer-catalyzed reaction. Herein, we report the selective alkylation of phenylacetonitrile to the monoalkylated product in a microchannel of 250-mu m internal diameter operated in a continuous and solvent-free manner in the slug-flow regime. The conversion of phenylacetonitrile increased from 40% to 99% as a result of a 97% larger slug surface-to-volume ratio when the volumetric aqueous-to-organic phase flow ratio was raised from 1.0 to 6.1 at the same residence time. The larger surface-to-volume ratio significantly promoted catalyst phase transfer but decreased selectivity because of the simultaneous increase of the rate of the consecutive reaction to the dialkylated product. There exists all Optimum flow ratio with a maximum productivity. Conversion and selectivity in the microchannel reactor were both found to be significantly larger than in a stirred reactor.
Resumo:
When a subject is heated, the stimulation of temperature-sensitive nerve endings in the skin, and the raising of the central body temperature, results in the reflex release of sympathetic vasoconstrictor tone in the skin of the extremities, causing a measurable temperature increase at the site of release. In the sympathetic release test, the subject is gently heated by placing the feet and calves in a commercially available foot warming pouch or immersing the feet and calves in warm water and wrapping the subject in blankets. Skin blood flow is estimated from measurements of skin temperature in the fingers. Normally skin temperature of the fingers is 65-75 degrees F in cool conditions (environmental temperature: 59-68 degrees F) and rises to 85-95 degrees F during body heating. Deviations in this pattern may mean that there is abnormal sympathetic vasoconstrictor control of skin blood flow. Abnormal skin blood flow can substantially impair an individual's ability to thermoregulate and has important clinical implications. During whole body heating, the skin temperature from three different skin sites is monitored and oral temperature is monitored as an index of core temperature. Students determine the fingertip temperature at which the reflex release of sympathetic activity occurs and its maximal attainment, which reflects the vasodilating capacity of this cutaneous vascular bed. Students should interpret typical sample data for certain clinical conditions (Raynaud's disease, peripheral vascular disease, and postsympathectomy) and explain why there may be altered skin blood flow in these disorders.
Resumo:
In this study, a constant suction technique for controlling boundary layer separation at low Reynolds numbers was designed and tested. This was later implemented on small wind turbines. Small wind turbines need to operate in low wind speeds, that is, in low Reynolds number regimes – typically in the range 104–105. Airfoils are prone to boundary layer separation in these conditions, leading to a substantial drop in aerodynamic performance of the blades. Under these conditions turbines will have reduced energy output. This paper presents experimental results of applying surface-suction over the suction-surface of airfoils for controlling boundary layer separation. The Reynolds numbers for the experiments are kept in the range 8×104–5×105. The air over the surface of the airfoil is drawn into the airfoil through a slit. It is found that the lift coefficient of the airfoils increases and the drag reduces. Based on the improved airfoil characteristics, an analysis of increase in Coefficient of Power (CP), versus input power for a small wind turbine blade with constant suction is presented.
Resumo:
This paper describes a model of a 1.8-litre four-cylinder four-stroke gasoline engine fitted with a close-coupled three-way catalyst (TWC). Designed to meet EURO 3 emissions standards, the engine includes some advanced emission control features in addition to the TWC, namely: variable valve timing (VVT), swirl control plates, and exhaust gas recirculation (EGR). Gas flow is treated as one-dimensional (1D) and unsteady in the engine ducting and in the catalyst. Reflection and transmission of pressure waves at the boundaries of the catalyst monolith are modelled. In-cylinder combustion is represented by a two-zone burn model with dissociation and reaction kinetics. A single Wiebe analysis of measured in-cylinder pressure data is used to determine the mass fraction burned as a function of crank angle (CA) at each engine speed. Measured data from steady-state dynamometer tests are presented for operation at wide open throttle (WOT) over a range of engine speeds. These results include CA-resolved traces of pressure at various locations throughout the engine together with cycle-averaged traces of gas composition entering the catalyst as indicated by a fast-response emissions analyser. Simulated engine performance and pressure wave action throughout the engine are well validated by the measured data.