39 resultados para Continuous Quantum Variables
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Tests for dependence of continuous, discrete and mixed continuous-discrete variables are ubiquitous in science. The goal of this paper is to derive Bayesian alternatives to frequentist null hypothesis significance tests for dependence. In particular, we will present three Bayesian tests for dependence of binary, continuous and mixed variables. These tests are nonparametric and based on the Dirichlet Process, which allows us to use the same prior model for all of them. Therefore, the tests are “consistent” among each other, in the sense that the probabilities that variables are dependent computed with these tests are commensurable across the different types of variables being tested. By means of simulations with artificial data, we show the effectiveness of the new tests.
Resumo:
This paper describes a stressed-skin diaphragm approach to the optimal design of the internal frame of a cold-formed steel portal framing system, in conjunction with the effect of semi-rigid joints. Both ultimate and serviceability limit states are considered. Wind load combinations are included. The designs are optimized using a real-coded niching genetic algorithm, in which both discrete and continuous decision variables are processed. For a building with two internal frames, it is shown that the material cost of the internal frame can be reduced by as much as 53%, compared with a design that ignores stressed-skin action.
Resumo:
Recently Ziman et al. [Phys. Rev. A 65, 042105 (2002)] have introduced a concept of a universal quantum homogenizer which is a quantum machine that takes as input a given (system) qubit initially in an arbitrary state rho and a set of N reservoir qubits initially prepared in the state xi. The homogenizer realizes, in the limit sense, the transformation such that at the output each qubit is in an arbitrarily small neighborhood of the state xi irrespective of the initial states of the system and the reservoir qubits. In this paper we generalize the concept of quantum homogenization for qudits, that is, for d-dimensional quantum systems. We prove that the partial-swap operation induces a contractive map with the fixed point which is the original state of the reservoir. We propose an optical realization of the quantum homogenization for Gaussian states. We prove that an incoming state of a photon field is homogenized in an array of beam splitters. Using Simon's criterion, we study entanglement between outgoing beams from beam splitters. We derive an inseparability condition for a pair of output beams as a function of the degree of squeezing in input beams.
Resumo:
There have been theoretical and experimental studies on quantum nonlocality for continuous variables, based on dichotomic observables. In particular, we are interested in two cases of dichotomic observables for the light field of continuous variables: One case is even and odd numbers of photons and the other case is no photon and the presence of photons. We analyze various observables to give the maximum violation of Bell's inequalities for continuous-variable states. We discuss an observable which gives the violation of Bell's inequality for any entangled pure continuous-variable state. However, it does not have to be a maximally entangled state to give the maximal violation of Bell's inequality. This is attributed to a generic problem of testing the quantum nonlocality of an infinite- dimensional state using a dichotomic observable.
Resumo:
We introduce a family of Hamiltonian systems for measurement-based quantum computation with continuous variables. The Hamiltonians (i) are quadratic, and therefore two body, (ii) are of short range, (iii) are frustration-free, and (iv) possess a constant energy gap proportional to the squared inverse of the squeezing. Their ground states are the celebrated Gaussian graph states, which are universal resources for quantum computation in the limit of infinite squeezing. These Hamiltonians constitute the basic ingredient for the adiabatic preparation of graph states and thus open new venues for the physical realization of continuous-variable quantum computing beyond the standard optical approaches. We characterize the correlations in these systems at thermal equilibrium. In particular, we prove that the correlations across any multipartition are contained exactly in its boundary, automatically yielding a correlation area law. © 2011 American Physical Society.
Resumo:
We establish a mapping between a continuous-variable (CV) quantum system and a discrete quantum system of arbitrary dimension. This opens up the general possibility to perform any quantum information task with a CV system as if it were a discrete system. The Einstein-Podolsky-Rosen state is mapped onto the maximally entangled state in any finite-dimensional Hilbert space and thus can be considered as a universal resource of entanglement. An explicit example of the map and a proposal for its experimental realization are discussed.
Resumo:
Quantum teleportation for continuous variables is generally described in phase space by using the Wigner functions. We study quantum teleportation via a mixed two-mode squeezed state in Hilbert-Schmidt space by using the coherent-state representation and operators. This shows directly how the teleported state is related to the original state.
Resumo:
We show that two qubits can be entangled by local interactions with an entangled two-mode continuous variable state. This is illustrated by the evolution of two two-level atoms interacting with a two-mode squeezed state. Two modes of the squeezed field are injected respectively into two spatially separate cavities and the atoms are then sent into the cavities to interact resonantly with the cavity field. We find that the atoms may be entangled even by a two-mode squeezed state which has been decohered while penetrating into the cavity.
Resumo:
We investigate the violation of noncontextuality by a class of continuous-variable states, including variations of entangled coherent states and a two-mode continuous superposition of coherent states. We generalize the Kochen-Specker (KS) inequality discussed by Cabello [A. Cabello, Phys. Rev. Lett. 101, 210401 (2008)] by using effective bidimensional observables implemented through physical operations acting on continuous-variable states, in a way similar to an approach to the falsification of Bell-Clauser-Horne-Shimony-Holt inequalities put forward recently. We test for state-independent violation of KS inequalities under variable degrees of state entanglement and mixedness. We then demonstrate theoretically the violation of a KS inequality for any two-mode state by using pseudospin observables and a generalized quasiprobability function.
Resumo:
We address the nonlocality of fully inseparable three-mode Gaussian states generated either by bilinear three-mode Hamiltonians or by a sequence of bilinear two-mode Hamiltonians. Two different tests revealing nonlocality are considered, in which the dichotomic Bell operator is represented by the displaced parity and by the pseudospin operator respectively. Three-mode states are also considered as a conditional source of two-mode non-Gaussian states, whose nonlocality properties are analysed. We found that the non-Gaussian character of the conditional states allows violation of Bell's inequalities (by parity and pseudospin tests) stronger than with a conventional twin-beam state. However, the non-Gaussian character is not sufficient to reveal nonlocality through a dichotomized quadrature measurement strategy.
Resumo:
We introduce a scheme to reconstruct arbitrary states of networks composed of quantum oscillators-e. g., the motionalstate of trapped ions or the radiation state of coupled cavities. The scheme involves minimal resources and minimal access, in the sense that it (i) requires only the interaction between a one-qubit probe and a single node of the network; (ii) provides the Weyl characteristic function of the network directly from the data, avoiding any tomographic transformation; (iii) involves the tuning of only one coupling parameter. In addition, we show that a number of quantum properties can be extracted without full reconstruction of the state. The scheme can be used for probing quantum simulations of anharmonic many-body systems and quantum computations with continuous variables. Experimental implementation with trapped ions is also discussed and shown to be within reach of current technology.
Resumo:
We apply the formalism of quantum estimation theory to extract information about potential collapse mechanisms of the continuous spontaneous localisation (CSL) form.
In order to estimate the strength with which the field responsible for the CSL mechanism couples to massive systems, we consider the optomechanical interaction
between a mechanical resonator and a cavity field. Our estimation strategy passes through the probing of either the state of the oscillator or that of the electromagnetic field that drives its motion. In particular, we concentrate on all-optical measurements, such as homodyne and heterodyne measurements.
We also compare the performances of such strategies with those of a spin-assisted optomechanical system, where the estimation of the CSL parameter is performed
through time-gated spin-like measurements.
Resumo:
We propose an optimal strategy for continuous-variable teleportation in a realistic situation. We show that the typical imperfect quantum operation can be described as a combination of an asymmetrically decohered quantum channel and perfect apparatuses for other operations. For the asymmetrically decohered quantum channel, we find some counterintuitive results: teleportation does not necessarily get better as the channel is initially squeezed more. We show that decoherence-assisted measurement and transformation may enhance fidelity for an asymmetrically mixed quantum channel.
Resumo:
Measures of entanglement, fidelity, and purity are basic yardsticks in quantum-information processing. We propose how to implement these measures using linear devices and homodyne detectors for continuous-variable Gaussian states. In particular, the test of entanglement becomes simple with some prior knowledge that is relevant to current experiments.