9 resultados para Constrained systems

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Massive multiple-input multiple-output (MIMO) systems are cellular networks where the base stations (BSs) are equipped with unconventionally many antennas. Such large antenna arrays offer huge spatial degrees-of-freedom for transmission optimization; in particular, great signal gains, resilience to imperfect channel knowledge, and small inter-user interference are all achievable without extensive inter-cell coordination. The key to cost-efficient deployment of large arrays is the use of hardware-constrained base stations with low-cost antenna elements, as compared to today's expensive and power-hungry BSs. Low-cost transceivers are prone to hardware imperfections, but it has been conjectured that the excessive degrees-of-freedom of massive MIMO would bring robustness to such imperfections. We herein prove this claim for an uplink channel with multiplicative phase-drift, additive distortion noise, and noise amplification. Specifically, we derive a closed-form scaling law that shows how fast the imperfections increase with the number of antennas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this brief, a hybrid filter algorithm is developed to deal with the state estimation (SE) problem for power systems by taking into account the impact from the phasor measurement units (PMUs). Our aim is to include PMU measurements when designing the dynamic state estimators for power systems with traditional measurements. Also, as data dropouts inevitably occur in the transmission channels of traditional measurements from the meters to the control center, the missing measurement phenomenon is also tackled in the state estimator design. In the framework of extended Kalman filter (EKF) algorithm, the PMU measurements are treated as inequality constraints on the states with the aid of the statistical criterion, and then the addressed SE problem becomes a constrained optimization one based on the probability-maximization method. The resulting constrained optimization problem is then solved using the particle swarm optimization algorithm together with the penalty function approach. The proposed algorithm is applied to estimate the states of the power systems with both traditional and PMU measurements in the presence of probabilistic data missing phenomenon. Extensive simulations are carried out on the IEEE 14-bus test system and it is shown that the proposed algorithm gives much improved estimation performances over the traditional EKF method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Large-scale multiple-input multiple-output (MIMO) communication systems can bring substantial improvement in spectral efficiency and/or energy efficiency, due to the excessive degrees-of-freedom and huge array gain. However, large-scale MIMO is expected to deploy lower-cost radio frequency (RF) components, which are particularly prone to hardware impairments. Unfortunately, compensation schemes are not able to remove the impact of hardware impairments completely, such that a certain amount of residual impairments always exists. In this paper, we investigate the impact of residual transmit RF impairments (RTRI) on the spectral and energy efficiency of training-based point-to-point large-scale MIMO systems, and seek to determine the optimal training length and number of antennas which maximize the energy efficiency. We derive deterministic equivalents of the signal-to-noise-and-interference ratio (SINR) with zero-forcing (ZF) receivers, as well as the corresponding spectral and energy efficiency, which are shown to be accurate even for small number of antennas. Through an iterative sequential optimization, we find that the optimal training length of systems with RTRI can be smaller compared to ideal hardware systems in the moderate SNR regime, while larger in the high SNR regime. Moreover, it is observed that RTRI can significantly decrease the optimal number of transmit and receive antennas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Wigner transition in a jellium model of cylindrical nanowires has been investigated by density-functional computations using the local spin-density approximation. A wide range of background densities rho(b) has been explored from the nearly ideal metallic regime (r(s)=[3/4 pi rho(b)](1/3)=1) to the high correlation limit (r(s)=100). Computations have been performed using an unconstrained plane wave expansion for the Kohn-Sham orbitals and a large simulation cell with up to 480 electrons. The electron and spin distributions retain the cylindrical symmetry of the Hamiltonian at high density, while electron localization and spin polarization arise nearly simultaneously in low-density wires (r(s)similar to 30). At sufficiently low density (r(s)>= 40), the ground-state electron distribution is the superposition of well defined and nearly disjoint droplets, whose charge and spin densities integrate almost exactly to one electron and 1/2 mu(B), respectively. Droplets are arranged on radial shells and define a distorted lattice whose structure is intermediate between bcc and fcc. Dislocations and grain boundaries are apparent in the droplets' configuration found by our simulations. Our computations aim at modeling the behavior of experimental low-carried density systems made of lightly doped semiconductor nanostructures or conducting polymers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In today’s atmosphere of constrained defense spending and reduced research budgets, determining how to allocate resources for research and design has become a critical and challenging task. In the area of aircraft design there are many promising technologies to be explored, yet limited funds with which to explore them. In addition, issues concerning uncertainty in technology readiness as well as the quantification of the impact of a technology (or combinations of technologies), are of key importance during the design process. This paper presents a methodology that details a comprehensive and structured process in which to quantitatively explore the effects of technology for a given baseline aircraft. This process, called Technology Impact Forecasting (TIF), involves the creation of a assessment environment for use in conjunction with defined technology scenarios, and will have a significant impact on resource allocation strategies for defense acquisition. The advantages and limitations of the method are discussed. In addition, an example TIF application, that of an Uninhabited Combat Aerial Vehicle, is presented and serves to illustrate the applicability of this methodology to a military system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a novel framework for visual tracking of human body parts is introduced. The approach presented demonstrates the feasibility of recovering human poses with data from a single uncalibrated camera by using a limb-tracking system based on a 2-D articulated model and a double-tracking strategy. Its key contribution is that the 2-D model is only constrained by biomechanical knowledge about human bipedal motion, instead of relying on constraints that are linked to a specific activity or camera view. These characteristics make our approach suitable for real visual surveillance applications. Experiments on a set of indoor and outdoor sequences demonstrate the effectiveness of our method on tracking human lower body parts. Moreover, a detail comparison with current tracking methods is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular communication is set to play an important role in the design of complex biological and chemical systems. An important class of molecular communication systems is based on the timing channel, where information is encoded in the delay of the transmitted molecule - a synchronous approach. At present, a widely used modeling assumption is the perfect synchronization between the transmitter and the receiver. Unfortunately, this assumption is unlikely to hold in most practical molecular systems. To remedy this, we introduce a clock into the model - leading to the molecular timing channel with synchronization error. To quantify the behavior of this new system, we derive upper and lower bounds on the variance-constrained capacity, which we view as the step between the mean-delay and the peak-delay constrained capacity. By numerically evaluating our bounds, we obtain a key practical insight: the drift velocity of the clock links does not need to be significantly larger than the drift velocity of the information link, in order to achieve the variance-constrained capacity with perfect synchronization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The end of Dennard scaling has promoted low power consumption into a firstorder concern for computing systems. However, conventional power conservation schemes such as voltage and frequency scaling are reaching their limits when used in performance-constrained environments. New technologies are required to break the power wall while sustaining performance on future processors. Low-power embedded processors and near-threshold voltage computing (NTVC) have been proposed as viable solutions to tackle the power wall in future computing systems. Unfortunately, these technologies may also compromise per-core performance and, in the case of NTVC, xreliability. These limitations would make them unsuitable for HPC systems and datacenters. In order to demonstrate that emerging low-power processing technologies can effectively replace conventional technologies, this study relies on ARM’s big.LITTLE processors as both an actual and emulation platform, and state-of-the-art implementations of the CG solver. For NTVC in particular, the paper describes how efficient algorithm-based fault tolerance schemes preserve the power and energy benefits of very low voltage operation.