6 resultados para Conserving energy

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A pattern synthesis approach is applied to a directional modulation (DM) system. A systematic synthesis procedure is suggested which ensures optimal constellation patterns production along pre-specified communication directions, whereas simultaneously conserving energy dispersal in other directions. In this study, the properties of DM systems synthesised from Gaussian magnitude far-field radiation pattern templates are used to illustrate performance benefits with regards to DM bit error rate response compared with those achieved by a conventional steered array.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nonlinear phenomena play an essential role in the sound production process of many musical instruments. A common source of these effects is object collision, the numerical simulation of which is known to give rise to stability
issues. This paper presents a method to construct numerical schemes that conserve the total energy in simulations of one-mass systems involving collisions, with no conditions imposed on any of the physical or numerical parameters.
This facilitates the adaptation of numerical models to experimental data, and allows a more free parameter adjustment in sound synthesis explorations. The energy preservedness of the proposed method is tested and demonstrated though several examples, including a bouncing ball and a non-linear oscillator, and implications regarding the wider applicability are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Collisions are an innate part of the function of many musical instruments. Due to the nonlinear nature of contact forces, special care has to be taken in the construction of numerical schemes for simulation and sound synthesis. Finite difference schemes and other time-stepping algorithms used for musical instrument modelling purposes are normally arrived at by discretising a Newtonian description of the system. However because impact forces are non-analytic functions of the phase space variables, algorithm stability can rarely be established this way. This paper presents a systematic approach to deriving energy conserving schemes for frictionless impact modelling. The proposed numerical formulations follow from discretising Hamilton׳s equations of motion, generally leading to an implicit system of nonlinear equations that can be solved with Newton׳s method. The approach is first outlined for point mass collisions and then extended to distributed settings, such as vibrating strings and beams colliding with rigid obstacles. Stability and other relevant properties of the proposed approach are discussed and further demonstrated with simulation examples. The methodology is exemplified through a case study on tanpura string vibration, with the results confirming the main findings of previous studies on the role of the bridge in sound generation with this type of string instrument.