12 resultados para Computer Programs

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper discusses the calculation of electron impact collision strengths and effective collision strengths for iron peak elements of importance in the analysis of many astronomical and laboratory spectra. It commences with a brief overview of R-matrix theory which is the basis of computer programs which have been widely used to calculate the relevant atomic data used in this analysis. A summary is then given of calculations carried out over the last 20 y for electron collisions with Fe II. The grand challenge, represented by the calculation of accurate collision strengths and effective collision strengths for this ion, is then discussed. A new parallel R-matrix program PRMAT, which is being developed to meet this challenge, is then described and results of recent calculations, using this program to determine optically forbidden transitions in e- – Ni IV on a Cray T3E-1200 parallel supercomputer, are presented. The implications of this e- – Ni IV calculation for the determination of accurate data from an isoelectronic e- – Fe II calculation are discussed and finally some future directions of research are reviewed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A reduced-density-operator description is developed for coherent optical phenomena in many-electron atomic systems, utilizing a Liouville-space, multiple-mode Floquet–Fourier representation. The Liouville-space formulation provides a natural generalization of the ordinary Hilbert-space (Hamiltonian) R-matrix-Floquet method, which has been developed for multi-photon transitions and laser-assisted electron–atom collision processes. In these applications, the R-matrix-Floquet method has been demonstrated to be capable of providing an accurate representation of the complex, multi-level structure of many-electron atomic systems in bound, continuum, and autoionizing states. The ordinary Hilbert-space (Hamiltonian) formulation of the R-matrix-Floquet method has been implemented in highly developed computer programs, which can provide a non-perturbative treatment of the interaction of a classical, multiple-mode electromagnetic field with a quantum system. This quantum system may correspond to a many-electron, bound atomic system and a single continuum electron. However, including pseudo-states in the expansion of the many-electron atomic wave function can provide a representation of multiple continuum electrons. The 'dressed' many-electron atomic states thereby obtained can be used in a realistic non-perturbative evaluation of the transition probabilities for an extensive class of atomic collision and radiation processes in the presence of intense electromagnetic fields. In order to incorporate environmental relaxation and decoherence phenomena, we propose to utilize the ordinary Hilbert-space (Hamiltonian) R-matrix-Floquet method as a starting-point for a Liouville-space (reduced-density-operator) formulation. To illustrate how the Liouville-space R-matrix-Floquet formulation can be implemented for coherent atomic radiative processes, we discuss applications to electromagnetically induced transparency, as well as to related pump–probe optical phenomena, and also to the unified description of radiative and dielectronic recombination in electron–ion beam interactions and high-temperature plasmas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reinforced concrete (RC) jacketing is a common method to retrofit existing columns with poor structural performance. It can be applied in two different ways: if the continuity of the jacket is ensured, the axial load of the column can be transferred to the jacket, which will be directly loaded; conversely, if no continuity is provided, the jacket induces only confinement action. In both cases the strength and ductility evaluation is rather complex, due to the different physical phenomena included, such as confinement, composite action core-jacket, preload, buckling of longitudinal bars.
Although different theoretical studies have been carried out to calculate the confinement effects, a practical approach to evaluate the flexural capacity and ductility is still missing. The calculation of these quantities is often related to the use of commercial computer programs, taking advantage of numerical methods such as fiber method or finite element method.
This paper presents a simplified approach to calculate the flexural strength and ductility of square RC jacketed sections subjected to axial load and bending moment. In particular the proposed approach is based on the calibration of the stress-block parameters including the confinement effect. Equilibrium equations are determined and buckling of longitudinal bars is modeled with a suitable stress-strain law. Moment-curvature curves are derived with simple calculations. Finally, comparisons are made with numerical analyses carried out with the code OpenSees and with experimental data available in the literature, showing good agreement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is a perception amongst some of those learning computer programming that the principles of object-oriented programming (where behaviour is often encapsulated across multiple class files) can be difficult to grasp, especially when taught through a traditional, didactic ‘talk-and-chalk’ method or in a lecture-based environment.
We propose a non-traditional teaching method, developed for a government funded teaching training project delivered by Queen’s University, we call it bigCode. In this scenario, learners are provided with many printed, poster-sized fragments of code (in this case either Java or C#). The learners sit on the floor in groups and assemble these fragments into the many classes which make-up an object-oriented program.
Early trials indicate that bigCode is an effective method for teaching object-orientation. The requirement to physically organise the code fragments imitates closely the thought processes of a good software developer when developing object-oriented code.
Furthermore, in addition to teaching the principles involved in object-orientation, bigCode is also an extremely useful technique for teaching learners the organisation and structure of individual classes in Java or C# (as well as the organisation of procedural code). The mechanics of organising fragments of code into complete, correct computer programs give the users first-hand practice of this important skill, and as a result they subsequently find it much easier to develop well-structured code on a computer.
Yet, open questions remain. Is bigCode successful only because we have unknowingly predominantly targeted kinesthetic learners? Is bigCode also an effective teaching approach for other forms of learners, such as visual learners? How scalable is bigCode: in its current form can it be used with large class sizes, or outside the classroom?

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional static analysis fails to auto-parallelize programs with a complex control and data flow. Furthermore, thread-level parallelism in such programs is often restricted to pipeline parallelism, which can be hard to discover by a programmer. In this paper we propose a tool that, based on profiling information, helps the programmer to discover parallelism. The programmer hand-picks the code transformations from among the proposed candidates which are then applied by automatic code transformation techniques.

This paper contributes to the literature by presenting a profiling tool for discovering thread-level parallelism. We track dependencies at the whole-data structure level rather than at the element level or byte level in order to limit the profiling overhead. We perform a thorough analysis of the needs and costs of this technique. Furthermore, we present and validate the belief that programs with complex control and data flow contain significant amounts of exploitable coarse-grain pipeline parallelism in the program’s outer loops. This observation validates our approach to whole-data structure dependencies. As state-of-the-art compilers focus on loops iterating over data structure members, this observation also explains why our approach finds coarse-grain pipeline parallelism in cases that have remained out of reach for state-of-the-art compilers. In cases where traditional compilation techniques do find parallelism, our approach allows to discover higher degrees of parallelism, allowing a 40% speedup over traditional compilation techniques. Moreover, we demonstrate real speedups on multiple hardware platforms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The inherent difficulty of thread-based shared-memory programming has recently motivated research in high-level, task-parallel programming models. Recent advances of Task-Parallel models add implicit synchronization, where the system automatically detects and satisfies data dependencies among spawned tasks. However, dynamic dependence analysis incurs significant runtime overheads, because the runtime must track task resources and use this information to schedule tasks while avoiding conflicts and races.
We present SCOOP, a compiler that effectively integrates static and dynamic analysis in code generation. SCOOP combines context-sensitive points-to, control-flow, escape, and effect analyses to remove redundant dependence checks at runtime. Our static analysis can work in combination with existing dynamic analyses and task-parallel runtimes that use annotations to specify tasks and their memory footprints. We use our static dependence analysis to detect non-conflicting tasks and an existing dynamic analysis to handle the remaining dependencies. We evaluate the resulting hybrid dependence analysis on a set of task-parallel programs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents a systematic review of research on the achievement outcomes of all types of approaches to teaching science in elementary schools. Study inclusion criteria included use of randomized or matched control groups, a study duration of at least 4 weeks, and use of achievement measures independent of the experimental treatment. A total of 23 studies met these criteria. Among studies evaluating inquiry-based teaching approaches, programs that used science kits did not show positive outcomes on science achievement measures (weighted ES=+0.02 in 7 studies), but inquiry-based programs that emphasized professional development but not kits did show positive outcomes (weighted ES=+0.36 in 10 studies). Technological approaches integrating video and computer resources with teaching and cooperative learning showed positive outcomes in a few small, matched studies (ES=+0.42 in 6 studies). The review concludes that science teaching methods focused on enhancing teachers’ classroom instruction throughout the year, such as cooperative learning and science-reading integration, as well as approaches that give teachers technology tools to enhance instruction, have significant potential to improve science learning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new programming methodology for introducing and tuning parallelism in Erlang programs, using source-level code refactoring from sequential source programs to parallel programs written using our skeleton library, Skel. High-level cost models allow us to predict with reasonable accuracy the parallel performance of the refactored program, enabling programmers to make informed decisions about which refactorings to apply. Using our approach, we demonstrate easily obtainable, significant and scalable speedups of up to 21 on a 24-core machine over the sequential code.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Much of the bridge stock on major transport links in North America and Europe was constructed in the 1950’s and 1960’s and has since deteriorated or is carrying loads far in excess of the original design loads. Structural Health Monitoring Systems (SHM) can provide valuable information on the bridge capacity but the application of such systems is currently limited by access and system cost. This paper investigates the development of a low cost portable SHM system using commercially available cameras and computer vision techniques. A series of laboratory tests have been carried out to test the accuracy of displacement measurements using contactless methods. The results from each of the tests have been validated with established measurement methods, such as linear variable differential transformers (LVDTs). A video image of each test was processed using two different digital image correlation programs. The results obtained from the digital image correlation methods provided an accurate comparison with the validation measurements. The calculated displacements agree within 4% of the verified measurements LVDT measurements in most cases confirming the suitability full camera based SHM systems