6 resultados para Collaborations complexes
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The synthesis of a number of new 2,2'-bipyridine ligands, functionalized with bulky ester side groups is reported (L2 - L8). Their reaction with [Ru(DMSO)4Cl2] gives rise to tris-chelate ruthenium(II) metal complexes which show an unusually high proportion of the fac-isomer, as judged by 1H NMR following conversion to the ruthenium(II) complex of 2,2'-bipyridine-5-carboxylic acid methyl ester (L1). The initial reaction appears to have thermodynamic control with the steric bulk of the ligands causing the third ligand to be labile under the reaction conditions used, giving rise to disappointing yields and allowing rearrangement to the more stable facial form. DFT studies indicate that this does not appear to be as a consequence of a metal centered electronic effect. The two isomers of [Ru(L1)3](PF6)2 were separated into the two individual forms using silica preparative plate chromatographic procedures, and the photophysical characteristics of the two forms compared. The results appear to indicate that there is no significant difference in both their room temperature electronic absorption and emission spectra or their excited state lifetimes at 77K.
Resumo:
Fac-ruthenium(II) tris-(5-carboxy-2,2'-bipyridine) has been synthesised as a single geometric isomer for the first time, and proves to be a good "building-block" to introduce new functionality with retention of the isomeric integrity.
Resumo:
Monomeric ruthenium(II) complexes [Ru(L)3]2+ containing unsymmetric bipyridine ligands [Where L = 5-methyl-2,2'-bipyridine (L1), 5-ethyl-2,2'-bipyridine (L2), 5-propyl-2,2'-bipyridine (L3), 5-(2-methylpropyl)-2,2'-bipyridine (L4), 5-(2,2-dimethylpropyl)-2,2'-bipyridine (L5) and 5-(carbomethoxy)-2,2'-bipyridine (L6)] have been studied and the meridional and facial isomers isolated by the use of cation-exchange column chromatography (SP Sephadex C-25) eluting with either sodium toluene-4-sulfonate or sodium hexanoate. The relative yield of the facial isomer was found to decrease with increasing steric bulk, preventing the isolation of fac-[Ru(L5)3]2+. The two isomeric forms were characterized by 1H NMR, with the complexes [Ru(L1-3)3]2+ demonstrating an unusually large coupling between the H6 and H4 protons. Crystals suitable for X-ray structural analysis of [Ru(L1)3]2+ were obtained as a mixture of the meridional and facial isomers, indicating that separation of this isomeric mixture could not be achieved by fractional crystallisation. The optical isomers of the complex [Ru(L3)3]2+ were chromatographically separated on SP Sephadex C-25 relying upon the inherent chirality of the support. It is apparent that chiral interactions can inhibit geometric isomer separation using this technique.
Resumo:
The effects of diphosphine flexibility and bite angle on the structures and luminescence properties of Au(I) complexes have been investigated. A range of diphosphines based on heteroaromatic backbones [bis(2-diphenylphosphino)phenylether (dpephos), 9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene (xantphos), and 4,6-bis(diphenylphosphino)dibenzofuran (dbfphos)] has been used to prepare mono- and digold derivatives. A clear relationship between the presence of aurophilic contacts and the emission properties of dinuclear complexes has been observed, with one of the complexes studied, [Au(2)Cl(2)(micro-xantphos)], exhibiting luminescence thermochromism.