18 resultados para Coherent State

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum teleportation for continuous variables is generally described in phase space by using the Wigner functions. We study quantum teleportation via a mixed two-mode squeezed state in Hilbert-Schmidt space by using the coherent-state representation and operators. This shows directly how the teleported state is related to the original state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum nonlocality is tested for an entangled coherent state, interacting with a dissipative environment. A pure entangled coherent state violates Bell's inequality regardless of its coherent amplitude. The higher the initial nonlocality, the more rapidly quantum nonlocality is lost. The entangled coherent state can also be investigated in the framework of 2x2 Hilbert space. The quantum nonlocality persists longer in 2x2 Hilbert space. When it decoheres it is found that the entangled coherent state fails the nonlocality test, which contrasts with the fact that the decohered entangled state is always entangled.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An entangled two-mode coherent state is studied within the framework of 2 x 2-dimensional Hilbert space. An entanglement concentration scheme based on joint Bell-state measurements is worked out. When the entangled coherent state is embedded in vacuum environment, its entanglement is degraded but not totally lost. It is found that the larger the initial coherent amplitude, the faster entanglement decreases. We investigate a scheme to teleport a coherent superposition state while considering a mixed quantum channel. We find that the decohered entangled coherent state may be useless for quantum teleportation as it gives the optimal fidelity of teleportation less than the classical limit 2/3.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We study universal quantum computation using optical coherent states. A teleportation scheme for a coherent-state qubit is developed and applied to gate operations. This scheme is shown to be robust to detection inefficiency.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is shown that a linear superposition of two macroscopically distinguishable optical coherent states can be generated using a single photon source and simple all-optical operations. Weak squeezing on a single photon, beam mixing with an auxiliary coherent state, and photon detecting with imperfect threshold detectors are enough to generate a coherent state superposition in a free propagating optical field with a large coherent amplitude (alpha>2) and high fidelity (F>0.99). In contrast to all previous schemes to generate such a state, our scheme does not need photon number resolving measurements nor Kerr-type nonlinear interactions. Furthermore, it is robust to detection inefficiency and exhibits some resilience to photon production inefficiency.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We analyse the possibilities for quantum state engineering offered by a model for Kerr-type nonlinearity enhanced by electromagnetically induced transparency (EIT), which was recently proposed by Petrosyan and Kurizki [2002, Phys. Rev. A, 65, 33833]. We go beyond the semiclassical treatment and derive a quantum version of the model with both a full Hamiltonian approach and an analysis in terms of dressed states. The preparation of an entangled coherent state via a cross-phase modulation effect is demonstrated. We briefly show that the violation of locality for such an entangled coherent state is robust against low detection efficiency. Finally, we investigate the possibility of a bi-chromatic photon blockade realized via the interaction of a low density beam of atoms with a bi-modal electromagnetic cavity which is externally driven. We show the effectiveness of the blockade effect even when more than a single atom is inside the cavity. The possibility to control two different cavity modes allows some insights into the generation of an entangled state of cavity modes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A long-lived coherent state and nonlinear interaction have been experimentally demonstrated for the vibrational mode of a trapped ion. We propose an implementation of quantum computation using coherent states of the vibrational modes of trapped ions. Differently from earlier experiments, we consider a far-off resonance for the interaction between external fields and the ion in a bidimensional trap. By appropriate choices of the detunings between the external fields, the adiabatic elimination of the ionic excited level from the Hamiltonian of the system allows for beam splitting between orthogonal vibrational modes, production of coherent states, and nonlinear interactions of various kinds. In particular, this model enables the generation of the four coherent Bell states. Furthermore, all the necessary operations for quantum computation, such as preparation of qubits and one-qubit and controlled two-qubit operations, are possible. The detection of the state of a vibrational mode in a Bell state is made possible by the combination of resonant and off-resonant interactions between the ion and some external fields. We show that our read-out scheme provides highly efficient discrimination between all the four Bell states. We extend this to a quantum register composed of many individually trapped ions. In this case, operations on two remote qubits are possible through a cavity mode. We emphasize that our remote-qubit operation scheme does not require a high-quality factor resonator: the cavity field acts as a catalyst for the gate operation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The generation of an entangled coherent state is one of the most important ingredients of quantum information processing using coherent states. Recently, numerous schemes to achieve this task have been proposed. In order to generate travelling-wave entangled coherent states, cross-phase-modulation, optimized by optical Kerr effect enhancement in a dense medium in an electromagnetically induced transparency (EIT) regime, seems to be very promising. In this scenario, we propose a fully quantized model of a double-EIT scheme recently proposed [D. Petrosyan and G. Kurizki, Phys. Rev. A 65, 33 833 (2002)]: the quantization step is performed adopting a fully Hamiltonian approach. This allows us to write effective equations of motion for two interacting quantum fields of light that show how the dynamics of one field depends on the photon-number operator of the other. The preparation of a Schrodinger cat state, which is a superposition of two distinct coherent states, is briefly exposed. This is based on nonlinear interaction via double EIT of two light fields (initially prepared in coherent states) and on a detection step performed using a 50:50 beam splitter and two photodetectors. In order to show the entanglement of an entangled coherent state, we suggest to measure the joint quadrature variance of the field. We show that the entangled coherent states satisfy the sufficient condition for entanglement based on quadrature variance measurement. We also show how robust our scheme is against a low detection efficiency of homodyne detectors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show that the use of probabilistic noiseless amplification in entangled coherent state-based schemes for the test of quantum nonlocality provides substantial advantages. The threshold amplitude to falsify a Bell-CHSH nonlocality test, in fact, is significantly reduced when amplification is embedded into the test itself. Such a beneficial effect holds also in the presence of detection inefficiency. Our study helps in affirming noiseless amplification as a valuable tool for coherent information processing and the generation of strongly nonclassical states of bosonic systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We address the distribution of quantum information among many parties in the presence of noise. In particular, we consider how to optimally send to m receivers the information encoded into an unknown coherent state. On one hand, a local strategy is considered, consisting in a local cloning process followed by direct transmission. On the other hand, a telecloning protocol based on nonlocal quantum correlations is analysed. Both the strategies are optimized to minimize the detrimental effects due to losses and thermal noise during the propagation. The comparison between the local and the nonlocal protocol shows that telecloning is more effective than local cloning for a wide range of noise parameters. Our results indicate that nonlocal strategies can be more robust against noise than local ones, thus being suitable candidates for playing a major role in quantum information networks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose a realistic scheme for measuring the micromaser linewidth by monitoring the phase diffusion dynamics of the cavity field. Our strategy consists of exciting an initial coherent state with the same photon number distribution as the micromaser steady-state field, singling out a purely diffusive process in the system dynamics. After the injection of a counterfield, measurements of the population statistics of a probe atom allow us to derive the micromaser linewidth in all ranges of the relevant parameters, establishing experimentally the distinctive features of the micromaser spectrum due to the discreteness of the electromagnetic field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The capability of intense ultrashort laser pulses to initiate, control and image vibrational wavepacket dynamics in the deuterium molecular ion has been simulated with a view to inform and direct future femtosecond pump-control-probe experiments. The intense-field coherent control of the vibrational superposition has been studied as a function of pulse intensity and delay time, to provide an indication of key constraints for experimental studies. For selected cases of the control mechanism, probing of the subsequent vibrational wavepacket dynamics has been simulated via the photodissociation (PD) channel. Such PD probing is shown to elucidate the modified wavepacket dynamics where the position of the quantum revival is sensitive to the control process. Through Fourier transform analysis the PD yield is also shown to provide a characterisation of the vibrational distribution. It has been shown that a simple 'critical R cut-off' approximation can be used to reproduce the effect of a probe pulse interaction, providing a convenient and efficient alternative to intensive computer simulations of the PD mechanism in the deuterium molecular ion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose an experimentally feasible scheme to generate a superposition of travelling field coherent states using an extremely small Kerr effect and an ancilla which could be a single photon or two entangled twin photons. The scheme contains ingredients which are all within the current state of the art and is robust against the main sources of errors which can be identified in our setups.