6 resultados para Coercivity

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Co films deposited on obliquely sputtered Pt underlayers of 100 Angstrom or greater have produced coercivities in excess of 800 Oe, and anisotropy fields over 950 Oe. The coercivity and anisotropy field increase with Pt deposition angle and thickness. A Pt capping layer has a detrimental effect on properties but a Cu capping layer does not. Films with an obliquely deposited underlayer exhibit reduced density and increased interface roughness compared to normally deposited films. Normally deposited Pt underlayers display a (111) texture, while those deposited obliquely show an increasingly random texture with Pt thickness and deposition angle. The trilayers fabricated in this study are presented as candidates for use in giant magnetoresistance sensors. (C) 2002 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocrystalline Co2xNi0.5-xZn0.5-xFe2O4 (x = 0-0.5) thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology as well as magnetic and microwave absorption properties of the films calcined at 1073 K were studied using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. All films were uniform with out microcracks . The Co content in the Co-Ni-Zn films resulted in a grain size ranging from 15 to 32 nm while it ranged from 33 to 49 nm in the corresponding powders. Saturation and remnant magnetization increased with increase in grain size, while coercivity demonstrated a drop due to multidomain behavior of crystallites for a given value of x. Saturation magnetization increased and remnant magnetization had a maximum as a function of grain size in dependent of x. In turn, coercivity increased with x independent of grain size. Complex permittivity of the Co-Ni-Zn ferrite films was measured in the frequency range 2-15 GHz. The highest hysteretic heating rate in the temperature range 315-355 K was observed in CoFe2O4. The maximum absorption band shifted from 13 to 11GHz as cobalt content increased from x = 0.1 to 0.2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocrystalline Ni0.5Zn0.5Fe2O4 thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology, magnetic, and microwave absorption properties of the films calcined in the 673-1073 K range were studied with x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, vibrating sample magnetometry, and evanescent microwave microscopy. All films were uniform without microcracks. Increasing the calcination temperature from 873 to 1073 K and time from 1 to 3 h resulted in an increase of the grain size from 12 to 27 nm. The saturation and remnant magnetization increased with increasing the grain size, while the coercivity demonstrated a maximum near a critical grain size of 21 nm due to the transition from monodomain to multidomain behavior. The complex permittivity of the Ni-Zn ferrite films was measured in the frequency range of 2-15 GHz. The heating behavior was studied in a multimode microwave cavity at 2.4 GHz. The highest microwave heating rate in the temperature range of 315-355 K was observed in the film close to the critical grain size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is renewed interest in rare-earth elements and gadolinium in particular for a range of studies in coupling physics and applications. However, it is still apparent that synthesis impacts understanding of the intrinsic magnetic properties of thin gadolinium films, particularly for thicknesses of topicality. We report studies on 50nm thick nanogranular polycrystalline gadolinium thin films on SiO2 wafers that demonstrate single-crystal like behavior. The maximum in-plane saturation magnetization at 4K was found to be 4pMS4K = (2.61±0.26)T with a coercivity of HC4K = (160±5)Oe. A maximum Curie point of TC = (293±2)K was measured via zero-field-cooled - field-cooled magnetization measurements in close agreement with values reported in bulk single crystals. Our measurements revealed magnetic transitions at T1 = (12±2)K (as deposited samples) and T2 = (22±2)K (depositions on heated substrates) possibly arising from the interaction of paramagnetic fcc grains with their ferromagnetic hcp counterparts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of nanostructured Ni-Zn ferrites Ni1-xZnxFe2O4 (x=0, 0.5 and 1) with a grain size from 24 to 65 nm have been prepared with a sol-gel method. The effect of composition and sintering temperature on morphology, magnetic properties, Curie temperature, specific heating rate at 295 kHz and hysteresis loss have been studied. The highest coercivity of 50 and 40 Oe, were obtained for NiFe2O4 and Ni0.5Zn0.5Fe2O4 samples with the grain size of 35 and 29 nm, respectively. The coercivity of Ni and Ni-Zn mixed ferrites decreased with temperature. The Bloch exponent was 1.5 for all samples. As the grain size increased, the Curie temperature of NiFe2O4 increased from 849 to 859 K. The highest saturation magnetization of 70 emu/g at 298 K and the highest specific heating rate of 1.6 K/s under radiofrequency heating at 295 kHz were observed over NiFe2O4 calcined at 1073 K. Both the magnitude of the hysteresis loss and the temperature dependence of the loss are influenced by the sintering temperature and composition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In an effort to achieve large high-field magnetization and increased Curie temperature, polycrystalline DyRh, (DyRh)95X5 and (DyRh)85X15 (X = Fe, Co, Ni, Gd) thin films have been prepared via ultra-high vacuum DC co-sputtering on SiO2 and Si wafers, using Ta as seed and cap material. A body-centred cubic CsCl-like crystal formation (B2 phase) was achieved for DyRh around the equiatomic equilibrium, known from single crystals. The maximum in-plane spontaneous magnetization at T = 4K in fields of μ0H = 5T of was found to be μ0MS,4K = (1.50 ± 0.09)T with a ferromagnetic transition at TC = (5 ± 1)K and a coercivity of μ0HC,4K[D] = (0.010 ± 0.001)T (at T = 4K) for layers deposited on substrates heated to 350°C. Samples prepared at room temperature exhibited poorer texture, smaller grains and less B2-phase content; this did impact on the Curie temperature which was higher compared to those layers with best crystallisation; however the maximal magnetization stayed unaffected. Ferromagnetic coupling was observed in ternary alloys of DyRhGd and DyRhNi with an increased Curie temperature, larger initial permeability, and
high-field magnetization which was best for (DyRh)85Gd15 with μ0MS,4K[Gd15] = (2.10 ± 0.13)T. DyRhFe and DyRhCo showed antiparallel coupling of the spontaneous magnetic moments.