9 resultados para Coconut

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extent of genetic diversity and the genetic relationships among 94 coconut varieties/populations (51 Talls and 43 Dwarfs) representing the entire geographic range of cultivation/distribution of the coconut was assessed using 12 pairs of coconut microsatellite primers. A high level of genetic diversity was observed in the collection with the mean gene diversity of 0.647+/-0.139, with that of the mean gene diversity of Talls 0.703+/-0.125 and 0.374+/-0.204 of Dwarfs. A phenetic tree based on DAD genetic distances clustered all the 94 varieties/ populations into two main groups, with one group composed of all the Talls from southeast Asia, the Pacific, west coast of Panama, and all Dwarfs and the other of all Talls from south Asia, Africa, and the Indian Ocean coast of Thailand. The allele distribution of Dwarfs highlighted a unique position of Dwarf palms from the Philippines exhibiting as much variation as that in the Tall group. The grouping of all Dwarfs representing the entire geographic distribution of the crop with Talls from southeast Asia and the Pacific and the allele distribution between the Tall and Dwarf suggest that the Dwarfs originated from the Tall forms and that too from the Talls of southeast Asia and the Pacific. Talls from Pacific Islands recorded the highest level of genetic diversity (0.6+/-0.26) with the highest number of alleles (51) among all the regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coconut variety Typica, form typica, commonly known as Sri Lanka tall coconuts is the most widely exploited and grown variety in Sri Lanka. Under the coconut bio-diversity conservation programme, several Typica populations have been collected by island-wide surveys and planted ex situ. Thirty-three coconut populations were subjected to microsatellite assay with eight coconut-specific microsatellite primer pairs in order to study the levels and distribution of genetic variation of the collected materials for formulating future collection strategies and selecting parents for the breeding programme. A total of 56 alleles were detected ranging from 3 to 10 alleles per primer pair with an average of 7 alleles per locus. Overall a very high level of genetic diversity was detected (0.999) for all the populations studied ranging from 0.526 for population Debarayaya to 0.683 for population Dickwella. Only four introduced coconut populations, i.e. Clovis, Margeret, Dickwella, Mirishena and an embryo-cultured population were clearly separated from the resulting dendrogram. A very high level of within population variation (99%) accounted for native populations suggests a common history and a restricted genetic base for native Sri Lankan tall coconuts. Categorization of alleles into different classes according to their frequency and distribution confirmed the results of the dedrogram and concluded the adequacy of single large collection from the entire target area to represent the total genetic diversity in Sri Lanka. This study discusses useful information regarding conservation and breeding of coconut in Sri Lanka.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the adsorption characteristics of two series of oxygen and nitrogen functionalized activated carbons were investigated. These series were a low nitrogen content(similar to 1 wt % daf) carbon series derived from coconut shell and a high nitrogen content (similar to 8 wt % daf) carbon series derived from polyacrylonitrile. In both series, the oxygen contents were varied over the range similar to 2-22 wt % daf. The porous structures of the functionalized activated carbons were characterized using N-2 (77 K) and CO2 (273 K) adsorption. Only minor changes in the porous structure were observed in both series. This allowed the effect of changes in functional group concentrations on metal ion adsorption to be studied without major influences due to differences in porous structure characteristics. The surface group characteristics were examined by Fourier transform infrared (FTIR) spectroscopy, acid/base titrations, and measurement of the point of zero charge (pH(PZC)). The adsorption of aqueous metal ion species, M2+(aq), on acidic oxygen functional group sites mainly involves an ion exchange mechanism. The ratios of protons displaced to the amount of M2+(aq) metal species adsorbed have a linear relationship for the carbons with pH(PZC) <= 4.15. Hydrolysis of metal species in solution may affect the adsorption of metal ion species and displacement of protons. In the case of basic carbons, both protons and metal ions are adsorbed on the carbons. The complex nature of competitive adsorption between the proton and metal ion species and the amphoteric character of carbon surfaces are discussed in relation to the mechanism of adsorption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A commercially available coconut-shell-derived active carbon was oxidized with nitric acid, and both the original and oxidized active carbons were treated with ammonia at 1073 K to incorporate nitrogen functional groups into the carbon. An active carbon with very high nitrogen content (similar to9.4 wt % daf) was also prepared from a nitrogen-rich precursor, polyacrylonitrile (PAN). These nitrogen-rich carbons had points of zero charge (pH(pzc)) similar to H-type active carbons. X-ray absorption near-edge structure (XANES) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and temperature-programmed desorption (TPD) were used to characterize the nitrogen functional groups in the carbons. The nitrogen functional groups present on the carbon surface were pyridinic, pyrrolic (or indolic), and pyridonic structures. The adsorption of transition metal cations Cd2+, Ni2+, and Cu2+ from aqueous solution on the suite of active carbons showed that adsorption was markedly higher for carbons with nitrogen functional groups present on the surface than for carbons with similar pH(pzc) values. In contrast, the adsorption characteristics of Ca2+ from aqueous solution were similar for all the carbons studied. Flow microcalorimetry (FMC) studies showed that the enthalpies of adsorption of Cd2+(aq) on the active carbons with high nitrogen contents were much higher than for nitric acid oxidized carbons studied previously, which also had enhanced adsorption characteristics for metal ion species. The enthalpies of adsorption of Cu2+ were similar to those obtained for Cd2+ for specific active carbons. The nitrogen functional groups in the carbons act as surface coordination sites for the adsorption of transition metal ions from aqueous solution. The adsorption characteristics of these carbons are compared with those of oxidized carbons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global warming, energy savings, and life cycle analysis issues are factors that have contributed to the rapid expansion of plant-based materials for buildings, which can be qualified as environmental-friendly, sustainable and efficient multifunctional materials. This review presents an overview on the several possibilities developed worldwide about the use of plant aggregate to design bio-based building materials. The use of crushed vegetal aggregates such as hemp (shiv), flax, coconut shells and other plants associated to mineral binder represents the most popular solution adopted in the beginning of this revolution in building materials. Vegetal aggregates are generally highly porous with a low apparent density and a complex architecture marked by a multi-scale porosity. These geometrical characteristics result in a high capacity to absorb sounds and have hygro-thermal transfer ability. This is one of the essential characteristics which differ of vegetal concrete compared to the tradition mineral-based concretes. In addition, the high flexibility of the aggregates leads to a non-fragile elasto-plastic behavior and a high deformability under stress, lack of fracturing and marked ductility with absorbance of the strains ever after having reached the maximum mechanical strength. Due to the sensitivity to moisture, the assessment of the durability of vegetal concrete constitutes one of the next scientific challenging of bio-based building materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Botanically, green composites belong to an economically important seed plant family that includes maize, wheat, rice, and sorghum known as Saccharum offi cinarum. There are so many natural fibers available in the environment such as rice husk, hemp fibers, flax fibers, bamboo fibers, coconut fiber, coconut coir, grawia optiva and many others also. Life Cycle Assessment (LCA) is a process to estimate the environmental feature and potential impacts related to a product, by organizing a directory of pertinent inputs and outputs of a product system, assessing the potential environmental impacts related with the said inputs and outputs, explaining the results of the inventory analysis and impact evaluation phases in connection to the objectives of the study. Particularly Bagasse, an agricultural residue not only becomes a problem from the environmental point of view, but also affects the profitability of the sugarcane industries. This chapter discusses the properties, processing methods and various other aspects including economic and environmental aspects related to green composites.