14 resultados para Chemical Synthesis

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

70.00% 70.00%

Publicador:

Resumo:

An efficient chemical synthesis of 5a-carba-alpha-D-mannose and its enzymatic elaboration to 5a-carba-alpha-D-mannose-6-phosphate, using yeast hexokinase, is described.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The combination of milli-scale processing and microwave heating has been investigated for the Cu-catalyzed Ullmann etherification in fine-chemical synthesis, providing improved catalytic activity and selective catalyst heating. Wall-coated and fixed-bed milli-reactors were designed and applied in the Cu-catalyzed Ullmann-type CO coupling of phenol and 4-chloropyridine. In a batch reactor the results show clearly increased yields for the microwave heated process at low microwave powers, whereas high powers and catalyst loadings reduced the benefits of microwave heating. Slightly higher yields were found in the Cu/ZnO wall-coated as compared to the Cu/TiO fixed-bed flow-reactor. The benefit here is that the reaction occurs at the surface of the metal nanoparticles confined within a support film making the nano-copper equally accessible. Catalyst deactivation was mainly caused by Cu oxidation and coke formation; however, at longer process times leaching played a significant role. Catalyst activity could partially be recovered by removal of deposited by-product by means of calcination. After 6h on-stream the reactor productivities were 28.3 and 55.1kgprod/(mR3h) for the fresh Cu/ZnO wall-coated and Cu/TiO fixed-bed reactor, respectively. Comparison of single- and multimode microwaves showed a threefold yield increase for single-mode microwaves. Control of nanoparticles size and loading allows to avoid high temperatures in a single-mode microwave field and provides a novel solution to a major problem for combining metal catalysis and microwave heating. Catalyst stability appeared to be more important and provided twofold yield increase for the CuZn/TiO catalyst as compared to the Cu/TiO catalyst due to stabilized copper by preferential oxidation of the zinc. For this catalyst a threefold yield increase was observed in single-mode microwaves which, to the best of our knowledge, led to a not yet reported productivity of 172kgprod/(mR3h) for the microwave and flow Ullmann CO coupling. © 2012 Elsevier B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mechanochemical synthesis has the potential to provide more sustainable preparative routes to catalysts than the current multistep solvent-based routes. In this review, the mechanochemical synthesis of catalysts is discussed, with emphasis placed on catalysts for environmental, energy and chemical synthesis applications. This includes the formation of mixed-metal oxides as well as the process of dispersing metals onto solid supports. In most cases the process involves no solvent. Encouragingly, there are several examples where the process is advantageous compared with the more normal solvent-based methods. This can be because of process cost or simplicity, or, notably, where it provides more active/selective catalysts than those made by conventional wet chemical methods. The need for greater, and more systematic, exploration of this currently unconventional approach to catalyst synthesis is highlighted.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Elementary computing operations can be arranged within molecules so that problems in chemical, biochemical, and biological situations can be addressed. Problems that are found in small and/or living spaces, where the corresponding semiconductor logic devices cannot operate conveniently, are particularly amenable to this approach. The visualization and monitoring of intracellular species is one such category. Problems in medical diagnostics and therapy form additional categories. Chemists and biologists employ chemical synthesis and molecular biology techniques to build molecular logic devices. The photochemical approach to molecular logic devices is particularly prevalent. The fluorescent photoinduced electron transfer (PET) switching principle is particularly useful for designing logic functions into small molecules.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Antimicrobial peptides play an important role in host defence, particularly in the oral cavity where there is constant challenge by microorganisms. The a-defensin antimicrobial peptides comprise 30–50% of the total protein in the azurophilic granules of human neutrophils, the most abundant of which is human neutrophil peptide 1 (HNP-1). Despite its antimicrobial activity, a limiting factor in the potential therapeutic use of HNP-1 is its chemical synthesis with the correct disulphide topology. In the present study, we synthesised a range of truncated defensin analogues lacking disulphide bridges. All the analogues were modelled on the C-terminal region of HNP-1 and their antimicrobial activity was tested against a range of microorganisms, including oral pathogens. Although there was variability in the antimicrobial activity of the truncated analogues synthesised, a truncated peptide named 2Abz23S29 displayed a broad spectrum of antibacterial activity, effectively killing all the bacterial strains tested. The finding that truncated peptides, modelled on the C-terminal ß-hairpin region of HNP-1 but lacking disulphide bridges, display antimicrobial activity could aid their potential use in therapeutic interventions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aims of this work were to investigate the conversion of a marine alga into hydroxyapatite (HA), and furthermore to design a composite bone tissue engineering scaffold comprising the synthesised HA within a porous bioresorbable polymer. The marine alga Phymatolithon calcareum, which exhibits a calcium carbonate honeycomb structure, with a natural architecture of interconnecting permeable pores (microporosity 4-11 mu m), provided the initial raw material for this study. The objective was to convert the alga into hydroxyapatite while maintaining its porous morphology using a sequential pyrolysis and chemical synthesis processes. Semi-quantitative XRD analysis of the post-hydrothermal material (pyrolised at 700-750 degrees C), indicated that the calcium phosphate (CaP) ceramic most likely consisted of a calcium carbonate macroporous lattice, with hydroxyapatite crystals on the surface of the macropores. Cell visibility (cytotoxicity) investigations of osteogenic cells were conducted on the CaP ceramic (i.e., the material post-hydrothermal analysis) which was found to be non-cytotoxic and displayed good biocompatibility when seeded with MG63 cells. Furthermore, a hot press scaffold fabrication technique was developed to produce a composite scaffold of CaP (derived from the marine alga) in a polycaprolactone (PCL) matrix. A salt leaching technique was further explored to introduce macroporosity to the structure (50-200 mu m). Analysis indicated that the scaffold contained both micro/macroporosity and mechanical strength, considered necessary for bone tissue engineering applications. (C) 2008 Published by Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bone void fillers that can enhance biological function to augment skeletal repair have significant therapeutic potential in bone replacement surgery. This work focuses on the development of a unique microporous (0.5-10 mu m) marine-derived calcium phosphate bioceramic granule. It was prepared fro Corallina officinalis, a mineralized red alga, using a novel manufacturing process. This involved thermal processing, followed by a low pressure-temperature chemical synthesis reaction. The study found that the ability to maintain the unique algal morphology was dependent on the thermal processing conditions. This study investigates the effect of thermal heat treatment on the physiochemical properties of the alga. Thermogravimetric analysis was used to monitor its thermal decomposition. The resultant thermograms indicated the presence of a residual organic phase at temperatures below 500 degrees C and an irreversible solid-state phase transition from mg-rich-calcite to calcium oxide at temperatures over 850 degrees C. Algae and synthetic calcite were evaluated following heat treatment in an air-circulating furance at temperatures ranging from 400 to 800 degrees C. The highest levels of mass loss occurred between 400-500 degrees C and 700-800 degrees C, which were attributed to the organic and carbonate decomposition respectively. The changes in mechanical strength were quantified using a simple mechanical test, which measured the bulk compressive strength of the algae. The mechanical test used may provide a useful evaluation of the compressive properties of similar bone void fillers that are in granular form. The study concluded that soak temperatures in the range of 600 to 700 degrees C provided the optimum physiochemical properties as a precursor to conversion to hydroxyapatite (HA). At these temperatures, a partial phase transition to calcium oxide occurred and the original skeletal morphology of the alga remained intact.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many natural cyclic peptides have potent and potentially useful biological activities. Their use as therapeutic starting points is often limited by the quantities available, the lack of known biological targets and the practical limits on diversification to fine-tune their properties. We report the use of enzymes from the cyanobactin family to heterocyclise and macrocyclise chemically synthesised substrates so as to allow larger-scale syntheses and better control over derivatisation. We have made cyclic peptides containing orthogonal reactive groups, azide or dehydroalanine, that allow chemical diversification, including the use of fluorescent labels that can help in target identification. We show that the enzymes are compatible and efficient with such unnatural substrates. The combination of chemical synthesis and enzymatic transformation could help renew interest in investigating natural cyclic peptides with biological activity, as well as their unnatural analogues, as therapeutics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The combination of bio- and chemo-catalysis to form a single synthetic route is a powerful methodology for the improvement of chemical synthesis. The extreme methods of biocatalysis (whole cell and isolated enzyme) fulfill very different roles. Biocatalysis by isolated enzymes enables highly efficient chemical transformations of extremely high selectivity and low contamination; however, conditions and substrates are limited to a narrow range. Whole cell biocatalysis enables the conversion of crude substrates, such as those derived from biomass; however, the products tend to be impure and delivered in dilute aqueous solution. Chemocatalysis is a well-established technique, and the addition of chemical catalysis and chemocatalytic methods to biocatalysis enables synthetic chemists to avoid the shortcomings of a biocatalytic step. For example, in enzymatic catalysis the addition of a chemical catalyst can allow the conversion of a racemic alcohol to an enantiopure, instead of racemic, product. In whole cell biocatalysis chemical reagents can assist the separation, transformation, and further isolation of the functionality of interest. The cooperation of bio- and chemocatalysts enables sustainable production of chemicals that would be impossible using biocatalysis alone, while achieving selectivities and using substrates not currently possible with chemocatalysis alone.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The synthesis of cobalt-doped ZnO nanowires is achieved using a simple, metal salt decomposition growth technique. A sequence of drop casting on a quartz substrate held at 100 degrees C and annealing results in the growth of nanowires of average (modal) length similar to 200 nm and diameter of 15 +/- 4 nm and consequently an aspect ratio of similar to 13. A variation in the synthesis process, where the solution of mixed salts is deposited on the substrate at 25 degrees C, yields a grainy film structure which constitutes a useful comparator case. X-ray diffraction shows a preferred [0001] growth direction for the nanowires while a small unit cell volume contraction for Co-doped samples and data from Raman spectroscopy indicate incorporation of the Co dopant into the lattice; neither technique shows explicit evidence of cobalt oxides. Also the nanowire samples display excellent optical transmission across the entire visible range, as well as strong photoluminescence (exciton emission) in the near UV, centered at 3.25 eV. (C) 2012 Elsevier B.V. All rights reserved.