36 resultados para Cathode

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have operated 25-100 mu m diameter radio frequency microhollow cathode discharges stably, for many hours, in neon and in argon. Electrical and spectroscopic measurements were used to explore three possible electron heating modes and obtain detail regarding the electron energy distribution. Analysis points to the possibility of pendular electron heating at low voltages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The string mode of operation for an electron beam ion source uses axially oscillating electrons in order to reduce power consumption, also simplifying the construction by omitting the collector with cooling requirements and has been called electron string ion source (ESIS). We have started a project (supported by INTAS and GSI) to use Schottky field emitting cathode tips for generating the electron string. The emission from these specially conditioned tips is higher by orders of magnitude than the focused Brillouin current density at magnetic fields of some Tesla and electron energies of some keV. This may avoid the observed instabilities in the transition from axially oscillating electrons to the string state of the electron plasma, opening a much wider field of possible operating parameters for an ESIS. Besides the presentation of the basic features, we emphasize in this paper a method to avoid damaging of the field, emission tip by backstreaming ions. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel tubular cathode for the direct methanol fuel cell (DMFC) is proposed, based on a tubular titanium mesh. A dip-coating method has been developed for its fabrication. The tubular cathode is composed of titanium mesh, a cathode diffusion layer, a catalyst layer, and a recast Nafion® film. The titanium mesh is present at the inner circumference of the diffusion layer, while the recast Nafion® film is at the outer circumference of the catalyst layer. A DMFC single cell with a 3.5 mgPt cm tubular cathode was able to perform as well, in terms of power density, as a conventional planar DMFC. A peak power density of 9 mW cm was reached under atmospheric air at 25 °C. © 2006 WILEY-VCH Verlag GmbH & Co. KGaA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial variability of bias-dependent electrochemical processes on a (La0.5Sr0.5)(2)CoO4 +/- modified (LaxSr1-x)CoO3- surface is studied using first-order reversal curve method in electrochemical strain microscopy (ESM). The oxygen reduction/evolution reaction (ORR/OER) is activated at voltages as low as 3-4 V with respect to bottom electrode. The degree of bias-induced transformation as quantified by ESM hysteresis loop area increases with applied bias. The variability of electrochemical activity is explored using correlation analysis and the ORR/OER is shown to be activated in grains at relatively low biases, but the final reaction rate is relatively small. At the same time, at grain boundaries, the onset of reaction process corresponds to larger voltages, but limiting reactivity is much higher. The reaction mechanism in ESM of mixed electronic-ionic conductor is further analyzed. These studies both establish the framework for probing bias-dependent electrochemical processes in solids and demonstrate rich spectrum of electrochemical transformations underpinning catalytic activity in cobaltites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uniform submicron La2NiO4+δ (sm-LNO) powders have been synthesized by a facile polyvinylpyrrolidone (PVP)-assisted hydrothermal route. In the presence of PVP, sm-LNO of pure phase has been obtained by calcination at the relatively low temperature of 900 °C for 8 h. Compared micron-sized LNO (m-LNO) particles obtained at 1,000 °C by hydrothermal synthesis route without PVP assisted, the sm-LNO-PVP displays regularly shaped and well-distributed particles in the range of 0.3–0.5 μm. The scanning electron microscopy (SEM) results showed that the sm-LNO sample is submicronic and that the m-LNO sample shows agglomerates with a broad size distribution. The electrochemical performance of m-LNO and sm-LNO-PVP has been investigated by electrochemical impedance spectroscopy. The polarization resistance of the sm-LNO-PVP cathode reaches a value of 0.40 Ω cm2 at 750 °C, which is lower than that of m-LNO (0.62 Ω cm2). This result indicates that a fine electrode microstructure with submicron particles can help to increase the active sites, accelerate oxygen diffusion, and reduce polarization resistance. An anode-supported single cell with sm-LNO cathode has been fabricated and tested over a temperature range from 650 to 800 °C. The maximum power density of the cell has achieved 834 mW cm−2 at 750 °C. These results therefore show that this PVP-assisted hydrothermal method is an effective approach to construct submicron-structured cathode and enhance the performance of intermediate temperature solid oxide fuel cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Li-rich materials are considered the most promising for Li-ion battery cathodes, as high capacity can be achieved. However, poor cycling stability is a critical drawback that leads to poor capacity retention. Here a strategy is used to synthesize a large-grain lithium-rich layered oxides to overcome this difficulty without sacrificing rate capability. This material is designed with micron scale grain with a width of about 300 nm and length of 1-3 μm. This unique structure has a better ability to overcome stress-induced structural collapse caused by Li-ion insertion/extraction and reduce the dissolution of Mn ions, which enable a reversible and stable capacity. As a result, this cathode material delivered a highest discharge capacity of around 308 mAh g-1 at a current density of 30 mA g-1 with retention of 88.3% (according to the highest discharge capacity) after 100 cycles, 190 mAh g-1 at a current density of 300 mA g-1 and almost no capacity fading after 100 cycles. Therefore, Lithium-rich material of large-grain structure is a promising cathode candidate in Lithium-ion batteries with high capacity and high cycle stability for application. This strategy of large grain may furthermore open the door to synthesize the other complex architectures for various applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a simple strategy, which is based on the idea of space confinement, for the synthesis of carbon coating on LiFePO4 nanoparticles/graphene nanosheets composites in a water-in-oil emulsion system. The prepared composite displayed high performance as a cathode material for lithium-ion battery, such as high reversible lithium storage capacity (158 mA h g-1 after 100 cycles), high coulombic efficiency (over 97%), excellent cycling stability and high rate capability (as high as 83 mA h g -1 at 60 C). Very significantly, the preparation method employed can be easily adapted and be extended as a general approach to sophisticated compositions and structures for the preparation of highly dispersed nanosized structure on graphene. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We developed a facile two-step hydrothermal procedure to prepare hybrid materials of LiV3O8 nanorods on graphene sheets. The special structure endows them with the high-rate transportation of electrolyte ions and electrons throughout the electrode matrix, resulting in remarkable electrochemical performance when they were used as cathodes in rechargeable lithium batteries. © 2013 The Royal Society of Chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A tactful ionic-liquid (IL)-assisted approach to in situ synthesis of iron fluoride/graphene nanosheet (GNS) hybrid nanostructures is developed. To ensure uniform dispersion and tight anchoring of the iron fluoride on graphene, we employ an IL which serves not only as a green fluoride source for the crystallization of iron fluoride nanoparticles but also as a dispersant of GNSs. Owing to the electron transfer highways created between the nanoparticles and the GNSs, the iron fluoride/GNS hybrid cathodes exhibit a remarkable improvement in both capacity and rate performance (230 mAh g-1 at 0.1 C and 74 mAh g-1 at 40 C). The stable adhesion of iron fluoride nanoparticles on GNSs also introduces a significant improvement in long-term cyclic performance (115 mAh g-1 after 250 cycles even at 10 C). The superior electrochemical performance of these iron fluoride/GNS hybrids as lithium ion battery cathodes is ascribed to the robust structure of the hybrid and the synergies between iron fluoride nanoparticles and graphene. © 2013 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein, we report a facile and effective adsorption strategy to improve the performance of Lithium-Sulfur (Li-S) batteries. MnO2 nanosheets grown on the surface of highly conductive graphene resulted in a coupled composite bilayer electrode when coated onto a sulfur cathode. In this way, a high initial specific capacity of 1395 mA h g-1 at a rate of 0.5C, a coulombic efficiency approaching 100% and steady cyclic efficiency with a fade rate of 0.3% per cycle from 10 to 100 cycles has been achieved. This hybrid electrode not only shows enhanced electrochemical performance but can also be easily controlled and scaled thereby aiding future commercialization of high-performance Li-S batteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work Cu1.4Mn1.6O4 (CMO) spinel oxide is prepared and evaluated as a novel cobalt-free cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs). Single phase CMO powder with cubic structure is identified using XRD. XPS results confirm that mixed Cu+/Cu2+ and Mn3+/Mn4+ couples exist in the CMO sample, and a maximum conductivity of 78 S cm−1 is achieved at 800 °C. Meanwhile, CMO oxide shows good thermal and chemical compatibility with a 10 mol% Sc2O3 stabilized ZrO2 (ScSZ) electrolyte material. Impedance spectroscopy measurements reveals that CMO exhibits a low polarization resistance of 0.143 Ω cm2 at 800 °C. Furthermore, a Ni-ScSZ/ScSZ/CMO single cell demonstrates a maximum power density of 1076 mW cm−2 at 800 °C under H2 (3% H2O) as the fuel and ambient air as the oxidant. These results indicate that Cu1.4Mn1.6O4 is a superior and promising cathode material for IT-SOFCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, Pr0.6Sr0.4FeO3-δ -Ce0.9Pr0.1O2-δ (PSFO-CPO) nanofibers were synthesized by a one-step electrospin technique for use in intermediate-temperature solid oxide fuel cell (IT-SOFC) applications. PSFO-CPO nanofibers were produced with a diameter of about 100nm and lengths exceeding tens of microns. The thermal expansion coefficient (TEC) matches with standard GDC electrolytes and the resulting conductivity also satisfies the needs of IT-SOFCs cathodes. EIS analysis of the nanofiber structured electrode gives a polarization resistance of 0.072Ωcm2 at 800°C, smaller than that from the powdered cathode with the same composition. The excellent electrochemical performance can be attributed to the well-constructed microstructure of the nanofiber structured cathode, which promotes surface oxygen diffusion and charge transfer processes. All the results imply that the one-step electrospin method is a facile and practical way of improving the cathode properties and that PSFO-CPO is a promising cathode material for IT-SOFCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The characterization of a direct current, low-pressure, and high-density reflex discharge plasma source operating in argon and in nitrogen, over a range of pressures 1.0-10(-2) mbar, discharge currents 20-200 mA, and magnetic fields 0-120 G, and its parametric characterization is presented. Both external parameters, such as the breakdown potential and the discharge voltage-current characteristic, and internal parameters, like the charge carrier's temperature and density, plasma potential, floating potential, and electron energy distribution function, were measured. The electron energy distribution functions are bi-Maxwellian, but some structure is observed in these functions in nitrogen plasmas. There is experimental evidence for the existence of three groups of electrons within this reflex discharge plasma. Due to the enhanced hollow cathode effect by the magnetic trapping of electrons, the density of the cold group of electrons is as high as 10(18) m(-3), and the temperature is as low as a few tenths of an electron volt. The bulk plasma density scales with the dissipated power. Another important feature of this reflex plasma source is its high degree of uniformity, while the discharge bulk region is free of electric field. (C) 2002 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new type of direct current, high-density, and low electron temperature reflex plasma source, obtained as a hybrid between a modified hollow-cathode discharge and a Penning ionization gauge discharge is presented. The plasma source was tested in argon, nitrogen, and oxygen over a range pressure of 1.0-10(-3) mbar, discharge currents 20-200 mA, and magnetic field 0-120 Gauss. Both external parameters, such as breakdown potential and the discharge voltage-current characteristic, and its internal parameters, like the electron energy distribution function, electron and ion densities, and electron temperature, were measured. Due to the enhanced hollow-cathode effect by the magnetic trapping of electrons, the density of the bulk plasma is as high as 10(18) m(-3), and the electron temperature is as low as a few tenths of electron volts. The plasma density scales with the dissipated power. Another important feature of this reflex plasma source is its high degree of uniformity, while the discharge bulk region is free of an electric field. (C) 2004 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a growing interest in the use of geophysical methods to aid investigation and monitoring of complex biogeochemical environments, for example delineation of contaminants and microbial activity related to land contamination. We combined geophysical monitoring with chemical and microbiological analysis to create a conceptual biogeochemical model of processes around a contaminant plume within a manufactured gas plant site. Self-potential, induced polarization and electrical resistivity techniques were used to monitor the plume. We propose that an exceptionally strong (>800 mV peak to peak) dipolar SP anomaly represents a microbial fuel cell operating in the subsurface. The electromagnetic and electrical geophysical data delineated a shallow aerobic perched water body containing conductive gasworks waste which acts as the abiotic cathode of microbial fuel cell. This is separated from the plume below by a thin clay layer across the site. Microbiological evidence suggests that degradation of organic contaminants in the plume is dominated by the presence of ammonium and its subsequent degradation. We propose that the degradation of contaminants by microbial communities at the edge of the plume provides a source of electrons and acts as the anode of the fuel cell. We hypothesize that ions and electrons are transferred through the clay layer that was punctured during the trial pitting phase of the investigation. This is inferred to act as an electronic conductor connecting the biologically mediated anode to the abiotic cathode. Integrated electrical geophysical techniques appear well suited to act as rapid, low cost sustainable tools to monitor biodegradation.