40 resultados para CYTOSOLIC GLUTATHIONE-PEROXIDASE

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiovascular disease is the major cause of morbidity and mortality in patients with end-stage renal failure. Increased free radical production and antioxidant depletion may contribute to the greatly increased risk of atherosclerosis in these patients. Glutathione peroxidase (GPX) is an important antioxidant, the plasma form of which is synthesized mainly in the kidney (eGPX). The aim of this study was to assess the activity of eGPX in patients with end-stage renal failure on haemodialysis. Venous blood was collected from 87 haemodialysis patients immediately prior to and after dialysis and from 70 healthy controls. Serum eGPX activity was measured using hydrogen peroxide as substrate and immunoreactivity determined by ELISA. eGPX activity was significantly reduced in dialysis patients when compared to controls (106 +/- 2.7 and 281 +/- 3.6 U/l respectively, p <0.001). Following haemodialysis, eGPX activity rose significantly to 146 +/- 3.8 U/l, p <0.001, although remaining below control values (p <0.005). Immunoreactive eGPX, however, was similar in all groups (pre-dialysis 14.10 +/- 1.26 microg/ml, post-dialysis 14.58 +/- 1.35 microg/ml, controls 15.20 +/- 1.62 microg/ml, p = NS). A decrease was observed in the specific activity of eGPX in patients when compared to controls (8.81 +/- 1.14, 10.71 +/- 1.54 and 21.97 +/- 1.68 U/mg respectively, p <0.0001). eGPX activity is impaired in patients undergoing haemodialysis and so may contribute to atherogenesis in renal failure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective Oxidative stress is implicated in the pathogenesis of many human diseases including atherosclerosis. Human glutathione peroxidase 1 (hgpx1) participates in limiting cellular damage caused by oxidation. A characteristic polyalanine sequence polymorphism in exon 1 of hgpx1 produces three alleles with five, six or seven alanine (ALA) repeats in this sequence. The objective of this study was to determine whether hgpx1 genotype is associated with an altered risk of coronary artery disease (CAD).

Methods The frequency of the ALA6 allele was determined in 207 men with angiographic evidence of significant CAD compared to a control group (n = 146), by analysing the lengths of polymerase chain reaction fragments containing the ALA repeat polymorphism. Additional information was collected on severity of CAD, presence or absence of a prior acute myocardial infarction (AMI), smoking status, body mass index (BMI) and other clinical data.

Results There was a significant association between individuals with at least one ALA6 allele and an increased risk of CAD after adjustment for age, BMI and smoking status (odds ratio, 2.07, 95% confidence interval, 1.08-3.99, P = 0.029). However, there was no association between hgpx1 genotype and a previous history of AMI or hgpx1 genotype and severity of CAD.

Conclusion We conclude that individuals possessing one or two ALA6 alleles appear to be at a modest increased risk of CAD. This observation merits further investigation in other patient populations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Green tea, a popular polyphenol-containing beverage, has been shown to alleviate clinical features of the metabolic syndrome. However, its effects in endogenous antioxidant biomarkers are not clearly understood. Thus, we tested the hypothesis that green tea supplementation will upregulate antioxidant parameters (enzymatic and nonenzymatic) in adults with the metabolic syndrome. Thirty-five obese participants with the metabolic syndrome were randomly assigned to receive one of the following for 8 weeks: green tea (4 cups per day), control (4 cups water per day), or green tea extract (2 capsules and 4 cups water per day). Blood samples and dietary information were collected at baseline (0 week) and 8 weeks of the study. Circulating carotenoids (a-carotene, ß-carotene, lycopene) and tocopherols (a-tocopherol, ?-tocopherol) and trace elements were measured using high-performance liquid chromatography and inductively coupled plasma mass spectroscopy, respectively. Serum antioxidant enzymes (glutathione peroxidase, glutathione, catalase) and plasma antioxidant capacity were measured spectrophotometrically. Green tea beverage and green tea extract significantly increased plasma antioxidant capacity (1.5 to 2.3 µmol/L and 1.2 to 2.5 µmol/L, respectively; P <.05) and whole blood glutathione (1783 to 2395 µg/g hemoglobin and 1905 to 2751 µg/g hemoglobin, respectively; P <.05) vs controls at 8 weeks. No effects were noted in serum levels of carotenoids and tocopherols and glutathione peroxidase and catalase activities. Green tea extract significantly reduced plasma iron vs baseline (128 to 92 µg/dL, P <.02), whereas copper, zinc, and selenium were not affected. These results support the hypothesis that green tea may provide antioxidant protection in the metabolic syndrome.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: This study investigated whether differences exist in atherogen-induced migratory behaviors and basal antioxidant enzyme capacity of vascular smooth muscle cells (VSMC) from human coronary (CA) and internal mammary (IMA) arteries. Methods: Migration experiments were performed using the Dunn chemotaxis chamber. The prooxidant [NAD(P)H oxidase] and antioxidant [NOS, superoxide dismutase, catalase and glutathione peroxidase] enzyme activities were determined by specific assays. Results: Chemotaxis experiments revealed that while both sets of VSMC migrated towards platelet-derived growth factor-BB (1-50 ng/ml) and angiotensin II (1-50 nM), neither oxidized-LDL (ox-LDL, 25-100 ng/ml) nor native LDL (100 ng/ml) affected chemotaxis in IMA VSMC. However, high dose ox-LDL produced significant chemotaxis in CAVSMC that was inhibited by pravastatin (100 nM), mevastatin (10 nM), losartan (10 nM), enalapril (1 micro.M), and MnTBAP (a free radical scavenger, 50 micro.M). Microinjection experiments with isoprenoids i.e. geranylgeranylpyrophosphate (GGPP) and farnesylpyrophosphate (FPP) showed distinct involvement of small GTPases in atherogeninduced VSMC migration. Significant increases in antioxidant enzyme activities and nitrite production along with marked decreases in NAD(P)H oxidase activity and superoxide levels were determined in IMA versus CA VSMC. Conclusions: Enhanced intrinsic antioxidant capacity may confer on IMAVSMC resistance to migration against atherogenic agents. Drugs that regulate ox-LDL or angiotensin II levels also exert antimigratory effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Chronic inhibition of nitric oxide (NO) synthesis is associated with hypertension, myocardial oxidative stress and hypertrophic remodeling. Up-regulation of the cardiomyocyte adrenomedullin (AM) / intermedin (IMD) receptor signaling cascade is also apparent in NO-deficient cardiomyocytes: augmented expression of AM and receptor activity modifying proteins RAMP2 and RAMP3 is prevented by blood pressure normalization while that of RAMP1 and intermedin (IMD) is not, indicating that the latter is regulated by a pressure-independent mechanism. Aims: to verify the ability of an anti-oxidant intervention to normalize cardiomyocyte oxidant status and to investigate the influence of such an intervention on expression of AM, IMD and their receptor components in NO-deficient cardiomyocytes. Methods: NO synthesis inhibitor, NG-nitro-L-arginine methyl ester (L-NAME, 35mg/kg/day) was given to rats for 8 weeks, with/without con-current administration of antioxidants (Vitamin C (25mg/kg/day) and Tempol (25mg/kg/day)). Results: In left ventricular cardiomyocytes isolated from L-NAME treated rats, increased oxidative stress was indicated by augmented (3.6 fold) membrane protein oxidation, enhanced expression of catalytic and regulatory subunits of pro-oxidant NADPH oxidases (NOX1, NOX2) and compensatory increases in expression of anti-oxidant glutathione peroxidase and Cu/Zn superoxide dismutases (SOD1, SOD3). Vitamin C plus Tempol did not reduce systolic blood pressure but normalized augmented plasma levels of IMD, but not of AM, and in cardiomyocytes: (i) abolished increased membrane protein oxidation; (ii) normalized augmented expression of prepro-IMD and RAMP1, but not prepro-AM, RAMP2 and RAMP3; (iii) attenuated (by 42%) increased width and normalized expression of hypertrophic markers, skeletal-�-actin and prepro-endothelin-1 similarly to blood pressure normalization but in contrast to blood pressure normalization did not attenuate augmented brain natriuretic peptide (BNP) expression. Conclusion: normalization specifically of augmented IMD/RAMP1 expression in NO-deficient cardiomyocytes by antioxidant intervention in the absence of blood pressure reduction indicates that these genes are likely to be induced directly by myocardial oxidative stress. Although oxidative stress contributed to cardiomyocyte hypertrophy, induction of IMD and RAMP1 is unlikely to be secondary to cardiomyocyte hypertrophy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Free radical-mediated damage to vascular cells may be involved in the pathogenesis of diabetic vasculopathy. The aim of this study was to compare the extent of glucose-induced oxidative stress in both vascular smooth muscle cells (VSMCs) and pericytes and the effect on antioxidant enzyme gene expression and activities. Porcine aortic VSMC and retinal pericytes were cultured in either 5 or 25 mmol/l glucose for 10 days. Intracellular malondialdehyde (MDA) was measured as a marker of peroxidative damage, and mRNA expression of CuZn-SOD, MnSOD, catalase, and glutathione peroxidase (GPX) were measured by Northern analysis. Glutathione (GSH) was also measured. There was a significant increase in MDA in VSMCs in 25 mmol/l glucose (1.34 +/- 0.11 vs. 1.88 +/- 0.24 nmol/mg protein, 5 vs. 25 mmol/l D-glucose, mean +/- SE, n = 15, P

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mitochondria produce cellular energy but also free-radicals, which damage cells despite an array of endogenous anti-oxidants. In Northern Europe, the mitochondrial haplogroup J has been related to longevity in nonagenarians and centenarians but also with age-related disease. Hypertension is an important contributor to atherosclerotic-related diseases and its pathogenesis is associated with increased oxidative stress. In this study, we questioned whether J haplogroup octo/nonagenarians from the Belfast Elderly Longitudinal Free-living Elderly STudy (BELFAST) study showed evidence of protective blood pressure or anti-oxidant profile which might explain their longevity advantage. Briefly, in a cross-sectional study, community-living, mentally alert (Folstein >25/30), octo/nonagenarian subjects, recruited for good health, were enlisted and consented as part of the BELFAST study, for blood pressure, anthropometric measurements and blood sampling. DNA typing for mitochondrial haplotypes was carried out with measurements for enzymatic and non-enzymatic antioxidants. J haplogroup carriers showed lower systolic blood pressure and glutathione peroxidase activity (Gpx) with higher folate measurements. There was no change in urate, bilirubin, albumin or nutrition-related antioxidants-selenium or vitamins A, C and a and ß carotene. BELFAST study mtDNA J haplogroup octo/nonagenarians showed lower blood pressure and reduced glutathione peroxidase activity and higher folate, but no change for other antioxidants. These findings are of interest in view of mtDNA J haplogroup's association with increased age in some previous studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oxidative stress appears to be important in the pathogenesis of Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC). Single-nucleotide polymorphisms (SNPs) of antioxidant enzyme genes may play a part in determining individual susceptibility to these diseases. The Factors Influencing the Barrett's Adenocarcinoma Relationship (FINBAR) study is a population-based, case-control study of BE and EAC in Ireland. DNA from EAC (n = 207), BE (> or =3 cm BE at endoscopy with specialized intestinal metaplasia on biopsy, n = 189) and normal population controls (n = 223) were analyzed. Several SNPs spanning the genes for glutathione S-transferase P1 (GSTP1), manganese superoxide dismutase (MnSOD) and glutathione peroxidase 2 (GPX2) were genotyped using multiplex polymerase chain reaction and SNaPshottrade mark. The chi(2) test was used to compare genotype and allele frequencies between case and control subjects. Linkage disequilibrium between SNPs was quantified using Lewontin's D' value and haplotype frequency estimates obtained using Haploview. Eleven SNPs were genotyped (six for GSTP1, three for MnSOD and two for GPX2); all were in Hardy-Weinberg equilibrium. None was significantly associated with EAC or BE even before Bonferroni correction. Odds ratios for EAC for individual SNPs ranged from 0.68 [95% confidence interval (CI) 0.43-1.08] to 1.25 (95% CI 0.73-2.16), and for BE from 0.84 (95% CI 0.52-1.30) to 1.30 (95% CI 0.85-1.97). SNPs in all three genes were in strong linkage disequilibrium (D' > 0.887) but haplotype analysis did not show any significant association with EAC or BE. SNPs involving the GSTP1, MnSOD and GPX2 genes were not associated with BE or EAC. Further studies aimed at identifying susceptibility genes should focus on different antioxidant genes or different pathways.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Eight Duroc × (Landrace × Large White) male pigs housed at a stocking rate of 0.50 m2/pig were subjected to a higher stocking rate of 0.25 m2/pig (higher density, HD) for two 4-day periods over 26 days. Using biochemical and proteomic techniques serum and plasma samples were examined to identify potential biomarkers for monitoring stress due to HD housing. HD housed pigs showed significant differences (P < 0.001) in total cholesterol and low density lipoprotein-associated cholesterol, as well as in concentrations of the pig-major acute phase protein (Pig-MAP) (P = 0.002). No differences were observed in serum cortisol or other acute phase proteins such as haptoglobin, C-reactive protein or apolipoprotein A–I. HD-individuals also showed an imbalance in redox homeostasis, detected as an increase in the level of oxidized proteins measured as the total plasma carbonyl protein content (P < 0.001) with a compensatory increase in the activity of the antioxidant enzyme glutathione peroxidase (P = 0.012). Comparison of the serum proteome yielded a new potential stress biomarker, identified as actin by mass spectrometry. Cluster analysis of the results indicated that individuals segregated into two groups, with different response patterns, suggesting that the stress response depended on individual susceptibility.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three groups of cows representing three ranges of welfare in the production system were included in the study: two groups of Bruna dels Pirineus beef cattle maintained under different management systems (good and semiferal conditions) and a group of Alberes cows, a breed that lives in the mountains (hardest conditions).

In order to identify new stress/welfare biomarkers, serum from Bruna cows living in both environments was subjected to DIGE labelling, two-dimensional electrophoresis and MALDI-MS or ion trap MS. Identification was achieved for 15 proteins, which mainly belonged to three biological functions, the oxidative stress pathway (glutathione peroxidase (GPx) and paraoxonase (PON-1)), the acute phase protein family (Heremans Schmid glycoprotein alpha2 (α2-HSG)) and the complement system.

Biological validation included the Alberes breed. GPx and PON-1 were validated by an enzymatic assay and found to be higher and lower, respectively, in cows living in hard conditions. α2-HSG was validated by ELISA and found to be reduced in hard conditions. Other biomarkers of the redox status were also altered by living conditions: protein carbonyl content, superoxide dismutase (SOD) and glutathione reductase (GR).

Our results show that changes in the redox system are the main adaptation of cows living in challenging environmental conditions. This article is part of a Special Issue entitled: “Farm animal proteomics”.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: Enhanced oxidative stress is involved in mediating the endothelial dysfunction associated with hypertension. The aim of this study was to investigate the relative contributions of pro-oxidant and anti-oxidant enzymes to the pathogenesis of endothelial dysfunction in genetic hypertension. Methods: Dilator responses to endothelium-dependent and endothelium-independent agents such as acetylcholine (ACh) and sodium nitroprusside were measured in the thoracic aortas of 28-week-old spontaneously hypertensive rats (SHR) and their matched normotensive counterparts, Wistar Kyoto rats (WKY). The activity and expression (mRNA and protein levels) of endothelial nitric oxide synthase (eNOS), p22-phox, a membrane-bound component of NAD(P)H oxidase, and antioxidant enzymes, namely, superoxide dismutases (CuZn- and Mn-SOD), catalase and glutathione peroxidase (GPx), were also investigated in aortic rings. Results: Relaxant responses to ACh were attenuated in phenylephrine-precontracted SHR aortic rings, despite a 2-fold increase in eNOS expression and activity. Although the activity and/or expression of SODs, NAD(P)H oxidase (p22-phox) and GPx were elevated in SHR aorta, catalase activity and expression remained unchanged compared to WKY. Pretreatment of SHR aortic rings with the inhibitor of xanthine oxidase, allopurinol, and the inhibitor of cyclooxygenase, indomethacin, significantly potentiated ACh-induced relaxation. Pretreatment of SHR rings with catalase and Tiron, a superoxide anion (O) scavenger, increased the relaxant responses to the levels observed in WKY rings whereas pyrogallol, a O -generator, abolished relaxant responses to ACh. Conclusion: These data demonstrate that dysregulation of several enzymes, resulting in oxidative stress, contributes to the pathogenesis of endothelial dysfunction in SHR and indicate that the antioxidant enzyme catalase is of particular importance in the reversal of this defect. © 2003 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AIM: In view of the increased rates of pre-eclampsia observed in diabetic pregnancy and the lack of ex vivo data on placental biomarkers of oxidative stress in T1 diabetic pregnancy, the aim of the current investigation was to examine placental antioxidant enzyme status and lipid peroxidation in pregnant women with type 1 diabetes. A further objective of the study was to investigate the putative impact of vitamin C and E supplementation on antioxidant enzyme activity and lipid peroxidation in type 1 diabetic placentae.

METHODS: The current study measured levels of antioxidant enzyme [glutathione peroxidase (Gpx), glutathione reductase (Gred), superoxide dismutase (SOD) and catalase] activity and degree of lipid peroxidation (aqueous phase hydroperoxides and 8-iso-prostaglandin F2α) in matched central and peripheral samples from placentae of DAPIT (n=57) participants. Levels of vitamin C and E were assessed in placentae and cord blood.

RESULTS: Peripheral placentae demonstrated significant increases in Gpx and Gred activities in pre-eclamptic in comparison to non-pre-eclamptic women. Vitamin C and E supplementation had no significant effect on cord blood or placental levels of these vitamins, nor on placental antioxidant enzyme activity or degree of lipid peroxidation in comparison to placebo-supplementation.

CONCLUSION: The finding that maternal supplementation with vitamin C/E does not augment cord or placental levels of these vitamins is likely to explain the lack of effect of such supplementation on placental indices including antioxidant enzymes or markers of lipid peroxidation.