4 resultados para CYCLOMETALATED IR COMPLEXES
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Symmetrical and unsymmetrical ligands containing terpyridyl coordinating units (N, N, N) or a cyclometalating equivalent (N, C, N), connected back-to-back either directly or via a p-terphenylene or 1,3-phenylene spacer, have been used to construct new diruthenium complexes. These compounds incorporate various terdentate chelates as capping ligands, to allow a double control of the electronic properties of each subcomplex and of the ensemble: via the terminal ligand or through the bridging fragment. Electronic coupling was studied from the intervalence transitions observed in several bimetallic ruthenium complexes of the bis-(cyclometalated) type differing by the substitution of a nitrogen atom by carbon in the terminal terpyridyl unit. The largest metal-metal interaction was found in complexes for which the terminal complexing unit is of the 1,3-di-2-pyridylbenzene type, i.e., with the carbon atom located on the metal-metal C-2 axis of the molecule. Investigations of the mechanism of interaction by extended Huckel calculations showed that the replacement of nitrogen by carbon raises the filled ligand levels, increasing the mixing with ligand orbitals and thus the metal-metal coupling. Finally, the intervalence transition was still observed for a bridging ligand containing three phenylene units as spacers, corresponding to a 24-Angstrom metal-metal distance.
Resumo:
The new complexes [NEt3H][M(HL)(cod)] (M = Rh 1 or Ir 2; H3L = 2,6-dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid, erotic acid; cod = cycloocta-1,5-diene) have been prepared by the reaction between [M2Cl2(cod)(2)] and erotic acid in dichloromethane in the presence of Ag2O and NEt3. They crystallise as dichloromethane adducts 1 . CH2Cl2 and 2 . CH2Cl2 from dichloromethane-hexane solutions. These isomorphous structures contain doubly hydrogen-bonded dimers, with additional hydrogen bonding to NEt3H+ cations and bridging CH2Cl2 molecules to form tapes. The use of (NBu4OH)-O-n instead of NEt3 gave the related complex [NBu4n][Rh(HL)(cod)] 1' which has an innocent cation not capable of forming strong hydrogen bonds and in contrast to 1 exists as discrete doubly hydrogen-bonded dimers. Complex 1' cocrystallises with 2,6-diaminopyridine (dap) via complementary triple hydrogen bonds to give [NBu4n][Rh(HL)(cod)]. dap . CH2Cl2 3. Complex 3 exhibits an extended sheet structure of associated [2 + 2] units, with layers of NBu4n, cations separating the sheets. These structural data together with those reported previously for platinum orotate complexes suggest that the steric requirements of the other ligands co-ordinated to the metal are important in influencing their hydrogen-bonding abilities. The solvent of crystallisation, the hydrogen-bonding propensity of the coligand and the nature of the counter ion also determine the type of association in the solid state.
Resumo:
2-Phosphanylethylcyclopentadienyl lithium compounds, Li[C5R'(4)(CH2)(2)PR2] (R = Et, R' = H or Me, R = Ph, R' = Me), have been prepared from the reaction of spirohydrocarbons C5R'(4)(C2H4) with LiPR2. C5Et4HSiMe2CH2PMe2, was prepared from reaction of Li[C5Et4] with Me2SiCl2 followed by Me2PCH2Li. The lithium salts were reacted with [RhCl(CO)2]2,[IrCl(CO)3] or [Co-2(CO)(8)] to give [M(C5R'(4)(CH2) 2PR2)(CO)] (M = Rh, R = Et, R' = H or Me, R= Ph, R' = Me; M = Ir or Co, R = Et, R' = Me), which have been fully characterised, in many cases crystallographically as monomers with coordination of the phosphorus atom and the cyclopentadienyl ring. The values of nu(CO) for these complexes are usually lower than those for the analogous complexes without the bridge between the cyclopentadienyl ring and the phosphine, the exception being [Rh(Cp'(CH2)(2)PEt2)(CO)] (Cp' = C5Me4), the most electron rich of the complexes. [Rh(C5Et4SiMe2CH2PMe2)(CO)] may be a dimer. [Co-2(CO)(8)] reacts with C5H5(CH2)(2)PEt2 or C5Et4HSiMe2CH2PMe2 (L) to give binuclear complexes of the form [Co-2(CO)(6)L-2] with almost linear PCoCoP skeletons. [Rh(Cp'(CH2)(2)PEt2)(CO)] and [Rh(Cp'(CH2)(2)PPh2)(CO)] are active for methanol carbonylation at 150 degrees C and 27 bar CO, with the rate using [Rh(Cp'(CH2)(2)PPh2)(CO)] (0.81 mol dm(-3) h(-1)) being higher than that for [RhI2(CO)(2)](-) (0.64 mol dm(-3) h(-1)). The most electron rich complex, [Rh(Cp'(CH2)(2)PEt2)(CO)] (0.38 mol dm(-3) h(-1)) gave a comparable rate to [Cp*Rh(PEt3)(CO)] (0.30 mol dm(-3) h(-1)), which was unstable towards oxidation of the phosphine. [Rh(Cp'(CH2)(2)PEt2)I-2], which is inactive for methanol carbonylation, was isolated after the methanol carbonylation reaction using [Rh(Cp'(CH2)(2)PEt2)(CO)].
Resumo:
BRCA1 is a major player in the DNA damage response. This is evident from its loss, which causes cells to become sensitive to a wide variety of DNA damaging agents. The major BRCA1 binding partner, BARD1, is also implicated in the DNA damage response, and recent reports indicate that BRCA1 and BARD1 co-operate in this pathway. In this report, we utilized small interfering RNA to deplete BRCA1 and BARD1 to demonstrate that the BRCA1-BARD1 complex is required for ATM/ATR (ataxia-telangiectasia-mutated/ATM and Rad3-related)-mediated phosphorylation of p53(Ser-15) following IR- and UV radiation-induced DNA damage. In contrast, phosphorylation of a number of other ATM/ATR targets including H2AX, Chk2, Chk1, and c-jun does not depend on the presence of BRCA1-BARD1 complexes. Moreover, prior ATM/ATR-dependent phosphorylation of BRCA1 at Ser-1423 or Ser-1524 regulates the ability of ATM/ATR to phosphorylate p53(Ser-15) efficiently. Phosphorylation of p53(Ser-15) is necessary for an IR-induced G(1)/S arrest via transcriptional induction of the cyclin-dependent kinase inhibitor p21. Consistent with these data, repressing p53(Ser-15) phosphorylation by BRCA1-BARD1 depletion compromises p21 induction and the G(1)/S checkpoint arrest in response to IR but not UV radia-tion. These findings suggest that BRCA1-BARD1 complexes act as an adaptor to mediate ATM/ATR-directed phosphorylation of p53, influencing G(1)/S cell cycle progression after DNA damage.