13 resultados para COUPLINGS
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
A rapid and stereodefined synthesis of MIDA−boryl vinylsilanes has been achieved through the hydrosilylation of an alkynylboronic ester. The E products which contain a silyl and boryl group can be selectively cross-coupled in a two-step bidirectional sequence to provide a rapid and high-yielding synthesis of complex styrenes.
Resumo:
Synthesis of the unsym. Homalium alkaloids hopromine (I, R = H, R1 = pentyl), hoprominol (I, R = OH, R1 = pentyl) and hopramalinol (I, R = OH, R1 = Ph), in diastereoisomeric mixt. form, is reported. The component eight-membered azalactams are first prepd. N-(3-halogenopropyl)-4-pentyl- and 4-heptylazetidin-2-ones are aminated and ring expanded in liq. ammonia to give, after reductive methylation, the corresponding 4-alkyl-5-methyl-1,5-diazacyclooctan-2-ones. Synthesis of the 4-(2-hydroxyheptyl)-5-methyl-1,5-diazacyclooctan-2-one required for hoprominol and hopromalinol is carried out via 4-allyl ?-lactam ring expansion to the eight-membered 4-allylazalactam, followed by methylation, epoxidn. and epoxide opening with lithium dibutylcuprate. A similar epoxidn.-cuprate sequence was carried out on the epoxypropyl ?-lactam, as its N-tert-butyldimethylsilyl deriv., and led to a convenient copper-catalyzed N- to O-migration of the protection; this migration is examd. Alkylation gave O-tert-butyldimethylsilyl-protected N-(3-chloropropyl)-4-(2-hydroxyheptyl)azetidin-2-one which could be aminated and transamidated in excellent yield, to give, after methylation, a superior sequence to the required eight-membered hydroxy azalactam. Although satisfactory for attachment of the first azalactam unit, a dibromobutane coupling system proved unreactive for the second. Couplings with unmethylated, methylated, and benzyloxycabronyl-protected azalactams were examd. using (E)-1,4-dibromobutene and (Z)-1,4-dichlorobutene as the bridging unit. Employing the latter, coupling the first N-methylated azalactam with potassium bis(trimethylsilyl)amide as the base, and then the second with bis(trimethylsilyl)amide-sodium hydride as the base system, provided a satisfactory synthetic outcome. Hydrogenation under acidic conditions gave the unsym. structures hopromine, hoprominol and hopromalinol, as well as the more simple and sym. alkaloid, homaline.
Resumo:
A recently generalized theory of perceptual guidance (general tau theory) was used to analyse coordination in skilled movement. The theory posits that (i) guiding movement entails controlling closure of spatial and/or force gaps between effecters and goals, by sensing and regulating the tau s of the gaps (the time-to-closure at current closure rate), (ii) a principal way of coordinating movements is keeping the rs of different gaps in constant ratio (known as tau-coupling), and (iii) intrinsically paced movements are guided and coordinated by tau-coupling onto a tau-guide, tau(g), generated in the nervous system and described by the equation tau(g) = 0.5(t-T-2/t) where T is the duration of the body movement and t is the time from the start of the movement. Kinematic analysis of hand to mouth movements by human adults, with eyes open or closed, indicated that hand guidance was achieved by maintaining, during 80-85% of the movement, the tau-couplings tau(alpha)-tau(t) and tau(t)-tau(g), where tau(t) is tau of the hand-mouth gap, tau(alpha) is tau of the angular gap to be closed by steering the hand and tau(g) is an intrinsic tau-guide.
Resumo:
We study the dynamical behavior of two initially entangled qubits, each locally coupled to an environment embodied by an interacting spin chain. We consider energy-exchange qubit-environment couplings resulting in rich and highly non-trivial entanglement dynamics. We obtain exact results for the time evolution of the concurrence between the two qubits and find that, by tuning the interaction parameters, one can freeze the dynamics of entanglement, therefore inhibiting their relaxation into the spin environments, as well as activate a sudden-death phenomenon. We also discuss the effects of an environmental quantum phase transition on the features of the two-qubit entanglement dynamics.
Resumo:
The ground-state entanglement entropy between block of sites in the random Ising chain is studied by means of the Von Neumann entropy. We show that in presence of strong correlations between the disordered couplings and local magnetic fields the entanglement increases and becomes larger than in the ordered case. The different behavior with respect to the uncorrelated disordered model is due to the drastic change of the ground state properties. The same result holds also for the random three-state quantum Potts model.
Resumo:
Perfect state transfer is possible in modulated spin chains [Phys. Rev. Lett. 92, 187902 (2004)], imperfections, however, are likely to corrupt the state transfer. We study the robustness of this quantum communication protocol in the presence of disorder both in the exchange couplings between the spins and in the local magnetic field. The degradation of the fidelity can be suitably expressed, as a function of the level of imperfection and the length of the chain, in a scaling form. In addition the time signal of fidelity becomes fractal. We further characterize the state transfer by analyzing the spectral properties of the Hamiltonian of the spin chain.
Resumo:
A new ternary Ir-Mn-Si phase with stoichiometry Mn3IrSi has been synthesized and found to crystallize in the cubic AlAu4-type structure, space group P213 with Z=4, which is an ordered form of the beta-Mn structure. The unit cell dimension was determined by x-ray powder diffraction to a=6.4973(3) Angstrom. In addition to the crystal structure, we have determined the magnetic structure and properties using superconducting quantum interference device magnetometry and Rietveld refinements of neutron powder diffraction data. A complex noncollinear magnetic structure is found, with magnetic moments of 2.97(4)u(B) at 10 K only on the Mn atoms. The crystal structure consists of a triangular network built up by Mn atoms, on which the moments are rotated 120degrees around the triangle axes. The magnetic unit cell is the same as the crystallographic and carries no net magnetic moment. The Neel temperature was determined to be 210 K. A first-principles study, based on density functional theory in a general noncollinear formulation, reproduces the experimental results with good agreement. The observed magnetic structure is argued to be the result of frustration of antiferromagnetic couplings by the triangular geometry.
Resumo:
The use of radars in detecting low flying, small targets is being explored for several decades now. However radar with counter-stealth abilities namely the passive, multistatic, low frequency radars are in the focus recently. Passive radar that uses Digital Video Broadcast Terrestrial (DVB-T) signals as illuminator of opportunity is a major contender in this area. A DVB-T based passive radar requires the development of an antenna array that performs satisfactorily over the entire DVB-T band. At Fraunhofer FHR, there is currently a need for an array antenna to be designed for operation over the 450-900 MHz range with wideband beamforming and null steering capabilities. This would add to the ability of the passive radar in detecting covert targets and would improve the performance of the system. The array should require no mechanical adjustments to inter-element spacing to correspond to the DVB-T carrier frequency used for any particular measurement. Such an array would have an increased flexibility of operation in different environment or locations.
The design of such an array antenna and the applied techniques for wideband beamforming and null steering are presented in the thesis. The interaction between the inter-element spacing, the grating lobes and the mutual couplings had to be carefully studied and an optimal solution was to be reached at that meets all the specifications of the antenna array for wideband applications. Directional beams, nulls along interference directions, low sidelobe levels, polarization aspects and operation along a wide bandwidth of 450-900 MHz were some of the key considerations.
Resumo:
We perform an extensive study of the properties of global quantum correlations in finite-size one-dimensional quantum spin models at finite temperature. By adopting a recently proposed measure for global quantum correlations (Rulli and Sarandy 2011 Phys. Rev. A 84 042109), called global discord, we show that critical points can be neatly detected even for many-body systems that are not in their ground state. We consider the transverse Ising model, the cluster-Ising model where three-body couplings compete with an Ising-like interaction, and the nearest-neighbor XX Hamiltonian in transverse magnetic field. These models embody our canonical examples showing the sensitivity of global quantum discord close to criticality. For the Ising model, we find a universal scaling of global discord with the critical exponents pertaining to the Ising universality class.
Resumo:
Noncollinear four-wave-mixing (FWM) techniques at near-infrared (NIR), visible, and ultraviolet frequencies have been widely used to map vibrational and electronic couplings, typically in complex molecules. However, correlations between spatially localized inner-valence transitions among different sites of a molecule in the extreme ultraviolet (XUV) spectral range have not been observed yet. As an experimental step toward this goal, we perform time-resolved FWM spectroscopy with femtosecond NIR and attosecond XUV pulses. The first two pulses (XUV-NIR) coincide in time and act as coherent excitation fields, while the third pulse (NIR) acts as a probe. As a first application, we show how coupling dynamics between odd- and even-parity, inner-valence excited states of neon can be revealed using a two-dimensional spectral representation. Experimentally obtained results are found to be in good agreement with ab initio time-dependent R-matrix calculations providing the full description of multielectron interactions, as well as few-level model simulations. Future applications of this method also include site-specific probing of electronic processes in molecules.
Resumo:
In recent years modern numerical methods have been employed in the design of Wave Energy Converters (WECs), however the high computational costs associated with their use makes it prohibitive to undertake simulations involving statistically relevant numbers of wave cycles. Experimental tests in wave tanks could also be performed more efficiently and economically if short time traces, consisting of only a few wave cycles, could be used to evaluate the hydrodynamic characteristics of a particular device or design modification. Ideally, accurate estimations of device performance could be made utilizing results obtained from investigations with a relatively small number of wave cycles. However the difficulty here is that many WECs, such as the Oscillating Wave Surge Converter (OWSC), exhibit significant non-linearity in their response. Thus it is challenging to make accurate predictions of annual energy yield for a given spectral sea state using short duration realisations of that sea. This is because the non-linear device response to particular phase couplings of sinusoidal components within those time traces might influence the estimate of mean power capture obtained. As a result it is generally accepted that the most appropriate estimate of mean power capture for a sea state be obtained over many hundreds (or thousands) of wave cycles. This ensures that the potential influence of phase locking is negligible in comparison to the predictions made. In this paper, potential methods of providing reasonable estimates of relative variations in device performance using short duration sea states are introduced. The aim of the work is to establish the shortness of sea state required to provide statistically significant estimations of the mean power capture of a particular type of Wave Energy Converter. The results show that carefully selected wave traces can be used to reliably assess variations in power output due to changes in the hydrodynamic design or wave climate.
Resumo:
We present a reformulation of the hairy-probe method for introducing electronic open boundaries that is appropriate for steady-state calculations involving nonorthogonal atomic basis sets. As a check on the correctness of the method we investigate a perfect atomic wire of Cu atoms and a perfect nonorthogonal chain of H atoms. For both atom chains we find that the conductance has a value of exactly one quantum unit and that this is rather insensitive to the strength of coupling of the probes to the system, provided values of the coupling are of the same order as the mean interlevel spacing of the system without probes. For the Cu atom chain we find in addition that away from the regions with probes attached, the potential in the wire is uniform, while within them it follows a predicted exponential variation with position. We then apply the method to an initial investigation of the suitability of graphene as a contact material for molecular electronics. We perform calculations on a carbon nanoribbon to determine the correct coupling strength of the probes to the graphene and obtain a conductance of about two quantum units corresponding to two bands crossing the Fermi surface. We then compute the current through a benzene molecule attached to two graphene contacts and find only a very weak current because of the disruption of the π conjugation by the covalent bond between the benzene and the graphene. In all cases we find that very strong or weak probe couplings suppress the current.