18 resultados para COPPER(II)-NEOCUPROINE REAGENT

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lewis acid complexes based on copper(II) and an imidazolium-tagged bis(oxazoline) have been used to catalyse the asymmetric Mukaiyama aldol reaction between methyl pyruvate and 1-methoxy-1-tri-methylsilyloxypropene under homogeneous and heterogeneous conditions. Although the ees obtained in ionic liquid were similar to those found in dichloromethane, there was a significant rate enhancement in the ionic liquid with reactions typically reaching completion within 2 min compared with only 55% conversion after 60 min in dichloromethane. However, this rate enhancement was offset by lower chemoselectivity in ionic liquids due to the formation of 3-hydroxy-1,3-diphenylbutan-1-one as a by-product. Supporting the catalyst on silica or an imidazolium-modified silica using the ionic liquid or in an ionic liquid-diethyl ether system completely suppressed the formation of this by-product without reducing the enantioselectivity. Although the heterogeneous systems were characterised by a drop in catalytic activity the system could be recycled up to five times without any loss in conversion or ee.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ionic liquids have been used to support a range of magnesium-and copper-based bis(oxazoline) complexes for the enantioselective Diels-Alder reaction between N-acryloyloxazolidinone and cyclopentadiene. Compared with reaction performed in dichloromethane or diethyl ether, an enhancement in ee is observed with a large increase in reaction rate. In addition, for non-sterically hindered bis(oxazoline) ligands, that is, phenyl functionalised ligands, a reversal in configuration is found in the ionic liquid, 1-ethyl-3-methylimidazolium bis[(trifluoromethanesulfonyl)imide], compared with molecular solvents. Supported ionic liquid phase catalysts have also been developed using surface-modified silica which show good reactivity and enantioselectivity for the case of the magnesium-based bis(oxazoline) complexes. Poor ees and conversion were observed for the analogous copper-based systems. Some drop in ee was found on supporting the catalyst due a drop in the rate of reaction and, therefore, an increase in the contribution from the uncatalysed a chiral reaction.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formation of pentanuclear copper(ii) complexes with the mandelohydroxamic ligand was studied in solution by electrospray ionization mass spectrometry (ESI-MS), absorption spectrophotometry, circular dichroism and H-1 NMR spectroscopy. The presence of lanthanide(iii) or uranyl ions is essential for the self-assembly of the 15-metallacrown-5 compounds. The negative mode ESI-MS spectra of solutions containing copper(II), mandelohydroxamic acid and lanthanide(iii) ions (Ln = La, Ce, Nd, Eu, Gd, Dy, Er, Tm, Lu, Y) or uranyl in the ratio 5:5:1 showed only the peaks that could be unambiguously assigned to the following intact molecular ions: {Ln(NO3)(2)[15-MCuIIN(MHA)-5](2-)}(-) and {Ln(NO3)[15-MCCuIIN(MHA)-5](3-)}(-), where MHA represents doubly deprotonated mandelohydroxamic acid. The NMR spectra of the pentanuclear species revealed only one set of peaks indicating a fivefold symmetry of the complex. The pentanuclear complexes synthesized with the enantiomerically pure R- or S-forms of mandelohydroxamic acid ligand, showed circular dichroism spectra which were mirror images of each other. The pentanuclear complex made from the racemic form of the ligand showed no signals in the CD spectrum. The UV/ Vis titration experiments revealed that the order in which the metal salts are added to the solution of the mandelohydroxamic acid ligand is crucial for the formation of metallacrown complexes. The addition of copper(ii) to the solutions containing mandelohydroxamic acid and neodymium(iii) in a 5:1 ratio lead to the formation of a pentanuclear complex in solution. In contrary, titration of lanthanide(iii) salt to the solution containing copper(ii) and mandelohydroxamic acid did not show any evidence for the formation of pentanuclear species. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transformation of vaterite into calcite may be performed by heating in the presence and the absence of oxygen. Vaterite remains thermally stable until a calcination temperature of 450°C. It transforms progressively to calcite up to 500°C giving two exothermic peaks: 1) at 481°C due to the transformation of vaterite surface which is in contact with a small amount of calcite phase already formed with the time on the solid surface from the humidity atmosphere; 2) at 491°C due to the transformation of pure vaterite bulk. The calcite phase remains stable until 700°C. Above this temperature the formation of CaO is observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics of a fast leuco-Methylene Blue (LMB) re-oxidation to Methylene Blue (MB) by copper(II)-halide (Cl-, Br-) complexes in acidic aqueous media has been studied spectrophotometrically using a stopped-flow technique. The reaction follows a simple first order rate expression under an excess of the copper(II) species (and H+(aq)), and the pseudo-first order rate constant (k'(obs)) is largely independent of the atmosphere used (air, oxygen, argon). The rate law, at constant Cl- (Br-) anion concentration, is given by the expression: (d[MB+])/dt = ((k(a)K[H+] + k(b))/(1 + K[H+])).[Cu-II][LMB] = k'(obs)[LMB], where K is the protonation constant, and k(a) and k(b) are the pseudo-second order rate constants for protonated and deprotonated forms of LMB, respectively The rate law was determined based on the observed k'(obs) vs. [Cu-II] and [H+] dependences. The rate dramatically increases with [Cl-] over the range: 0.1-1.5 M, reflecting the following reactivity order: Cu2+(aq)

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural and coordination properties of complexes formed upon the interaction of copper(II) and chromium(II) chlorides with diallrylimidazolium chloride (RMlm(+)Cl(-)) ionic liquids and glucose are studied by a combination of density functional theory (DFT) calculations and X-ray absorption spectroscopy (XAS). In the absence of the carbohydrate substrate, isolated mononuclear four-coordinated MeCl42- species (Me = Cu, Cr) dominate in the ionic liquid solution. The organic part of the ionic liquid does not directly interact with the metal centers. The interactions between the RMlm(+) cations and the anionic metal chloride complexes are limited to hydrogen bonding with the basic Cl- ligands and the overall electrostatic stabilization of the anionic metal complexes. Exchange of Cl ligands by a hydroxyl group of glucose is only favorable for CrCl42-. For Cu2+ complexes, the formation of hydrogen bonded complexes between CuCl42- and glucose is preferred. No preference for the coordination of metal chloride species to specific hydroxyl group of the carbohydrate is found. The formation of binuclear metal chloride complexes is also considered. The reactivity and selectivity patterns of the Lewis acid catalyzed reactions of glucose are discussed in the framework of the obtained results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Imidazolium-tagged bis(oxazolines) have been prepared and used as chiral ligands in the copper(II)-catalysed Diels-Alder reaction of N-acryloyl- and N-crotonoyloxazolidinones with cyclopentadiene and 1,3-cyclohexadiene in the ionic liquid 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [emim][NTf2]. A significant and substantial enhancement in the rate and enantioselectivity was achieved in [emim][NTf2] compared with dichloromethane. For example, complete conversion and enantioselectivities up to 95 % were obtained for the reaction between N-acryloyloxazolidinone and cyclopentadiene within 2 min in [emim][NTf2] whereas the corresponding reaction in dichloromethane required 60 min to reach completion and gave an ee of only 16 %. The enhanced rates obtained in the ionic liquid enabled a catalyst loading as low as 0.5 mol % to give complete conversion within 2 min while retaining the same level of enantioselectivity. The imidazolium-tagged catalysts can be recycled ten times without any loss in activity or enantioselectivity and showed much higher affinity for the ionic liquid phase during the recycle procedure than the analogous uncharged ligand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The asymmetric Diels-Alder reaction between N-acryloyloxazolidinone and cyclopentadiene and the Mukaiyama-aldol reaction between methylpyruvate and 1-phenyl-1-trimethylsilyloxyethene have been catalysed by heterogeneous copper(II)-bis(oxazoline)-based polymer immobilised ionic liquid phase (PIILP) systems generated from a range of linear and cross linked ionic polymers. In both reactions selectivity and ee were strongly influenced by the choice of polymer. A comparison of the performance of a range of Cu(II)-bis(oxazoline)-PIILP catalyst systems against analogous supported ionic liquid phase (SILP) heterogeneous catalysts as well as their homogeneous counterparts has been undertaken and their relative merits evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple colorimetric method to monitor the production of ionic liquid precursors is developed, which is based on the determination of 1-methylimidazole with copper(II) chloride. The synthesis of 1-ethyl-3-methylimidazolium chloride, an industrially important ionic liquid precursor, can be followed and the purity of the final product can be readily assessed in a quick and convenient manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protonated betaine bis(trifluoromethylsulfonyl) imide is an ionic liquid with the ability to dissolve large quantities of metal oxides. This metal-solubilizing power is selective. Soluble are oxides of the trivalent rare earths, uranium(VI) oxide, zinc(II) oxide, cadmium( II) oxide, mercury( II) oxide, nickel( II) oxide, copper(II) oxide, palladium(II) oxide, lead(II) oxide, manganese( II) oxide, and silver( I) oxide. Insoluble or very poorly soluble are iron(III), manganese(IV), and cobalt oxides, as well as aluminum oxide and silicon dioxide. The metals can be stripped from the ionic liquid by treatment of the ionic liquid with an acidic aqueous solution. After transfer of the metal ions to the aqueous phase, the ionic liquid can be recycled for reuse. Betainium bis( trifluoromethylsulfonyl) imide forms one phase with water at high temperatures, whereas phase separation occurs below 55.5 degrees C ( temperature switch behavior). The mixtures of the ionic liquid with water also show a pH-dependent phase behavior: two phases occur at low pH, whereas one phase is present under neutral or alkaline conditions. The structures, the energetics, and the charge distribution of the betaine cation and the bis( trifluoromethylsulfonyl) imide anion, as well as the cation-anion pairs, were studied by density functional theory calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ammonium chloride/mercuric chloride mixtures (molar ratio 2: 1) react at 350degreesC with Monel (Cu68Ni32) to yield (NH4)NiCl3 and mercury and copper amalgam, respectively. With larger amounts of (NH4)Cl in the reaction mixture, dark green (NH4)(2)(NH3)(x)[Ni(NH3)(2)Cl-4] (x approximate to 0.77) (1) is also formed as a main product. Light blue crystals of the mixed-valent copper(I,II) chloride (NH4)(5)Cl-5[CuCl2][CuCl4] (2) were obtained as a minor byproduct from a 4:1 reaction mixture. The crystal structures were determined from single crystal X-ray data; (1): tetragonal, I4/mmm, a = 770.9(1), e = 794.2(2) pm, 190 reflections, R-1 = 0.0263; (2): tetragonal, I4/mcm, a = 874.8(1), c = 2329.2(3) pm, 451 reflections, R-1 = 0.0736. In (1) Ni2+ resides in trans-[Ni(NH3)(2)Cl-4](2-) octahedra, and in (2) copper(l) is linearly two-coordinated in ECUC121- and copper(II) resides in a flattened tetrahedron [CuCl4](2-) with a tetrahedricity of 89%. (C) 2001 Elsevier Science.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A complementary computational and experimental study of the reactivity of Lewis acidic CrCl2, CuCl2 and FeCl2 catalysts towards glucose activation in dialkylimidazolium chloride ionic liquids is performed. The selective dehydration of glucose to 5-hydroxymethylfurfural (HMF) proceeds through the intermediate formation of fructose. Although chromium(II) and copper(II) chlorides are able to dehydrate fructose with high HMF selectivity, reasonable HMF yields from glucose are only obtained with CrCl2 as the catalyst. Glucose conversion by CuCl2 is not selective, while FeCl2 catalyst does not activate sugar molecules. These differences in reactivity are rationalized on the basis of in situ X-ray absorption spectroscopy measurements and the results of density functional theory calculations. The reactivity in glucose dehydration and HMF selectivity are determined by the behavior of the ionic liquid-mediated Lewis acid catalysts towards the initial activation of the sugar molecules. The formation of a coordination complex between the Lewis acidic Cr2+ center and glucose directs glucose transformation into fructose. For Cu2+ the direct coordination of sugar to the copper(II) chloride complex is unfavorable. Glucose deprotonation by a mobile Cl- ligand in the CuCl42- complex initiates the nonselective conversion. In the course of the reaction the Cu2+ ions are reduced to Cu+. Both paths are prohibited for the FeCl2 catalyst.