49 resultados para CONFINED CRYSTALLIZATION
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Electroless nickel-phosphorus deposits with 5-8 wt% P and 3-5 wt% P were analysed for the effects of continuous heating on the crystallization kinetics and phase transformation behaviour of the deposits. The as-deposited coatings consist of a mixture of amorphous and microcrystalline nickel phases, featuring in their X-ray diffraction patterns. Continuous heating processes to 300C-800C at 20C/min were carried out on the deposits in a differential scanning calorimetric apparatus. The subsequent X-ray diffraction analyses show that the sequence of phase transformation process was: amorphous phase + microcrystalline nickel, f.c.c. nickel + Ni3P stable phases. Preferred orientation of nickel {200} plane developed in the deposits after the heating processes. Differential scanning calorimetry of the deposits indicates that the crystallization temperatures increased with decreasing phosphorus content, and increasing heating rate. Crystallization activation energies of the deposits (230 and 322 kJ/mol, respectively) were calculated using the peak temperatures of crystallization process, from the differential scanning calorimetric curves at the heating rates ranging from 5 to 50C/min. It was found that the deposit with lower phosphorus content has higher activation energy.
Resumo:
The response of a room temperature molten salt to an external electric field when it is confined to a nanoslit is studied by molecular dynamics simulations. The fluid is confined between two parallel and oppositely charged walls, emulating two electrified solid-liquid interfaces. Attention is focused on structural, electrostatic, and dynamical properties, which are compared with those of the nonpolarized fluid. It is found that the relaxation of the electrostatic potential, after switching the electric field off, occurs in two stages. A first, subpicosecond process accounts for 80% of the decay and is followed by a second subdiffusive process with a time constant of 8 ps. Diffusion is not involved in the relaxation, which is mostly driven by small anion translations. The relaxation of the polarization in the confined system is discussed in terms of the spectrum of charge density fluctuations in the bulk.
Structure and dynamics of a confined ionic liquid. topics of relevance to dye-sensitized solar cells
Resumo:
The behavior of a model ionic liquid (IL) confined between two flat parallel walls was studied at various interwall distances using computer simulations. The results focus both on structural and dynamical properties. Mass and charge density along the confinement axis reveal a structure of layers parallel to the walls that leads to an oscillatory profile in the electrostatic potential. Orientational correlation functions indicate that cations at the interface orient tilted with respect to the surface and that any other orientational order is lost thereafter. The diffusion coefficients of the ions exhibit a maximum as a function of the confinement distance, a behavior that results from a combination of the structure of the liquid as a whole and a faster molecular motion in the vicinity of the walls. We discuss the relevance of the present results and elaborate on topics that need further attention regarding the effects of ILs in the functioning of IL-based dye-sensitized solar cells.
Resumo:
The three-component naphthalene dioxygenase (NDO) enzyme system carries out the first step in the aerobic degradation of naphthalene to (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene by Rhodococcus sp. strain NCIMB 12038. The terminal oxygenase component (naphthalene 1,2-dioxygenase) that catalyzes this reaction belongs to the aromatic ring hydroxylating dioxygenase family and has been crystallized. These enzymes utilize a mononuclear nonheme iron centre to catalyze the addition of dioxygen to their respective substrates. In this reaction, two electrons, two protons and a dioxygen molecule are consumed. The Rhodococcus enzyme has only 33 and 29% sequence identity to the corresponding alpha- and beta-subunits of the NDO system of Pseudomonas putida NCIMB 9816-4, for which the tertiary structure has been reported. In order to determine the three-dimensional structure of the Rhodococcus NDO, diffraction-quality crystals have been prepared by the hanging-drop method. The crystals belongs to space group P2(1)2(1)2(1), with unit-cell parameters a = 87.5, b = 144, c = 185.6 Angstrom, alpha = beta = gamma = 90degrees, and diffract to 2.3 Angstrom resolution.