3 resultados para CO2 flux

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The microbial contribution to soil organic matter (SOM) has recently been shown to be much larger than previously thought and thus its role in carbon sequestration may also be underestimated. In this study we employ C-13 ((CO2)-C-13) to assess the potential CO2 sequestration capacity of soil chemoautotrophic bacteria and combine nuclear magnetic resonance (NMR) with stable isotope probing (SIP), techniques that independently make use of the isotopic enrichment of soil microbial biomass. In this way molecular information generated from NMR is linked with identification of microbes responsible for carbon capture. A mathematical model is developed to determine real-time CO2 flux so that net sequestration can be calculated. Twenty-eight groups of bacteria showing close homologies with existing species were identified. Surprisingly, Ralstonia eutropha was the dominant group. Through NMR we observed the formation of lipids, carbohydrates, and proteins produced directly from CO2 utilized by microbial biomass. The component of SOM directly associated with CO2 capture was calculated at 2.86 mg C (89.21 mg kg(-1)) after 48 h. This approach can,differentiate between SOM derived through microbial uptake of CO2 and other SOM constituents and represents a first step in tracking the fate and dynamics of microbial biomass in soil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of liming on the flow of recently photosynthesized carbon to rhizosphere soil was studied using (CO2)-C-13 pulse labelling, in an upland grassland ecosystem in Scotland. The use of C-13 enabled detection, in the field, of the effect of a 4-year liming period of selected soil plots on C allocation from plant biomass to soil, in comparison with unlimed plots. Photosynthetic rates and carbon turnover were higher in plants grown in limed soils than in those from unlimed plots. Higher delta(13)C% values were detected in shoots from limed plants than in those from unlimed plants in samples clipped within 15 days of the end of pulse labelling. Analysis of the aboveground plant production corresponding to the 4-year period of liming indicated that the standing biomass was higher in plots that received lime. Lower delta(13)C% values in limed roots compared with unlimed roots were found, whereas no significant difference was detected between soil samples. Extrapolation of our results indicated that more C has been lost through the soil than has been gained via photosynthetic assimilation because of pasture liming in Scotland during the period 1990-1998. However, the uncertainty associated with such extrapolation based on this single study is high and these estimates are provided only to set our findings in the broader context of national soil carbon emissions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sequestration of CO2 via biological sinks is a matter of great scientific importance due to the potential lowering of atmospheric CO2. In this study, a custom built incubation chamber was used to cultivate a soil microbial community to instigate chemoautotrophy of a temperate soil. Real-time atmospheric CO2 concentrations were monitored and estimations of total CO2 uptake were made. After careful background flux corrections, 4.52 +/- 0.05 g CO2 kg I dry soil was sequestered from the chamber atmosphere over 40 h. Using isotopically labelled (CO2)-C-13 and GCMS-IRMS, labelled fatty acids were identified after only a short incubation, hence confirming CO2 sequestration for soil. The results of this in vivo study provide the ground work for future studies intending to mimic the in situ environment by providing a reliable method for investigating CO2 uptake by soil microorganisms.(C) 2012 Elsevier Ltd. All rights reserved.