108 resultados para CHARGED LATEX-PARTICLES

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We discuss the effect of the attractive force associated with overlapping Debye spheres on the dispersion properties of the longitudinal and transverse dust lattice waves in strongly coupled dust crystals. The dust grain attraction is shown to contribute to a destabilization of the longitudinal dust lattice oscillations. The (optic-like) transverse mode dispersion law is shown to change. due to the Debye sphere dressing effect, from the known inverse-dispersive ("backward wave") form into a normal dispersive law (i.e. the group velocity changes sign). The stability of one-dimensionless bi-layers, consisting of (alternating) negatively and positively charged dust particles, is also discussed. The range of parameter values (mainly in terms of the lattice parameter kappa) where the above predictions are valid, are presented. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The linear and nonlinear properties of low-frequency electrostatic excitations of charged dust particles (or defects) in a dense collisionless, unmagnetized Thomas-Fermi plasma are investigated. A fully ionized three-component model plasma consisting of electrons, ions, and negatively charged massive dust grains is considered. Electrons and ions are assumed to be in a degenerate quantum state, obeying the Thomas-Fermi density distribution, whereas the inertial dust component is described by a set of classical fluid equations. Considering large-amplitude stationary profile travelling-waves in a moving reference frame, the fluid evolution equations are reduced to a pseudo-energy-balance equation, involving a Sagdeev-type potential function. The analysis describes the dynamics of supersonic dust-acoustic solitary waves in Thomas-Fermi plasmas, and provides exact predictions for their dynamical characteristics, whose dependence on relevant parameters (namely, the ion-to-electron Fermi temperature ratio, and the dust concentration) is investigated. An alternative route is also adopted, by assuming weakly varying small-amplitude disturbances off equilibrium, and then adopting a multiscale perturbation technique to derive a Korteweg–de Vries equation for the electrostatic potential, and finally solving in terms for electric potential pulses (electrostatic solitons). A critical comparison between the two methods reveals that they agree exactly in the small-amplitude, weakly superacoustic limit. The dust concentration (Havnes) parameter h = Zd0nd0/ne0 affects the propagation characteristics by modifying the phase speed, as well as the electron/ion Fermi temperatures. Our results aim at elucidating the characteristics of electrostatic excitations in dust-contaminated dense plasmas, e.g., in metallic electronic devices, and also arguably in supernova environments, where charged dust defects may occur in the quantum plasma regime.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Theoretical and numerical studies are presented of the nonlinear amplitude modulation of dust-acoustic (DA) waves propagating in an unmagnetized three component, weakly-coupled, fully ionized plasma consisting of electrons, positive ions and charged dust particles, considering perturbations oblique to the carrier wave propagation direction. The stability analysis, based on a nonlinear Schrodinger-type equation (NLSE), shows that the wave may become unstable; the stability criteria depend on the angle theta between the modulation and propagation directions. Explicit expressions for the instability rate and threshold have been obtained in terms of the dispersion laws of the system. The possibility and conditions for the existence of different types of localized excitations have also been discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A theoretical study is presented of the nonlinear amplitude modulation of waves propagating in unmagnetized plasmas contaminated by charged dust particles. Distinct well-known dusty plasma modes are explicitly considered, namely, the dust-acoustic wave, the dust-ion acoustic wave, and transverse dust-lattice waves. Using a multiple-scale technique, a nonlinear Schrodinger-type equation is derived, describing the evolution of the wave amplitude. A stability analysis reveals the possibility for modulational instability to occur, possibly leading to the formation of different types of envelope-localized excitations (solitary waves), under conditions which depend on the wave dispersion laws and intrinsic dusty plasma parameters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The modulational instability of dust-acoustic waves is investigated, relying on a recently proposed model for strong electrostatic interactions between the highly charged dust particles. The resulting effect on the occurrence (threshold, growth rate) of modulational instability is investigated. Our results can in principle be tested experimentally.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electron–positron pair plasmas represent a unique state of matter, whereby there exists an intrinsic and complete symmetry between negatively charged (matter) and positively charged (antimatter) particles. These plasmas play a fundamental role in the dynamics of ultra-massive astrophysical objects and are believed to be associated with the emission of ultra-bright gamma-ray bursts. Despite extensive theoretical modelling, our knowledge of this state of matter is still speculative, owing to the extreme difficulty in recreating neutral matter–antimatter plasmas in the laboratory. Here we show that, by using a compact laser-driven setup, ion-free electron–positron plasmas with unique characteristics can be produced. Their charge neutrality (same amount of matter and antimatter), high-density and small divergence finally open up the possibility of studying electron–positron plasmas in controlled laboratory experiments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The transport of charged particles in partially turbulent magnetic systems is investigated from first principles. A generalized compound transport model is proposed, providing an explicit relation between the mean-square deviation of the particle parallel and perpendicular to a magnetic mean field, and the mean-square deviation which characterizes the stochastic field-line topology. The model is applied in various cases of study, and the relation to previous models is discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Charged-particle microbeams provide a unique opportunity to control precisely, the dose to individual cells and the localization of dose within the cell. The Gray Laboratory is now routinely operating a charged-particle microbeam capable of delivering targeted and counted particles to individual cells, at a dose-rate sufficient to permit a number of single-cell assays of radiation damage to be implemented. By this means, it is possible to study a number of important radiobiological processes in ways that cannot be achieved using conventional methods. This report describes the rationale, development and current capabilities of the Gray Laboratory microbeam.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many studies have shown that the effectiveness of radiations of varying LET is similar when yields of dsb have been measured, despite large differences in biological response. Recent evidence has suggested however, that current techniques underestimate the yields of dsb. By monitoring the fragmentation of DNA over a wide range of fragment sizes ( 6 Mbp) by pulsed field electrophoresis, RBE values greater than 1.0 for radiations of around 100 keV/mm have been determined. The data provide evidence for the production of correlated breaks produced within cells as particle tracks traverse the nucleus. The highly ordered structure of DNA within mammalian cells may lead to clustering of breaks over distances related to the repeating unit structures of the chromatin. As well as these regionally damaged sites, a major contributor to radiation effectiveness will be the localised clustering of damage in the 1 - 20 bp region. A major effort is required to elucidate the relative importance of these levels of clustering and their importance in biological response.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Exposure to ionizing radiation can increase the risk of cancer, which is often characterized by genomic instability. In environmental exposures to high-LET radiation (e.g. Ra-222), it is unlikely that many cells will be traversed or that any cell will be traversed by more than one alpha particle, resulting in an in vivo bystander situation, potentially involving inflammation. Here primary human lymphocytes were irradiated with precise numbers of He-3(2+) ions delivered to defined cell population fractions, to as low as a single cell being traversed, resembling in vivo conditions. Also, we assessed the contribution to genomic instability of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFA). Genomic instability was significantly elevated in irradiated groups ( greater than or equal totwofold over controls) and was comparable whether cells were traversed by one or two He-3(2+) ions. Interestingly, substantial heterogeneity in genomic instability between experiments was observed when only one cell was traversed. Genomic instability was significantly reduced (60%) in cultures in which all cells were irradiated in the presence of TNFA antibody, but not when fractions were irradiated under the same conditions, suggesting that TNFA may have a role in the initiation of genomic instability in irradiated cells but not bystander cells. These results have implications for low-dose exposure risks and cancer. (C) 2005 by Radiation Research Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new nonlinear theory for the perpendicular transport of charged particles is presented. This approach is based on an improved nonlinear treatment of field line random walk in combination with a generalized compound diffusion model. The generalized compound diffusion model is much more systematic and reliable, in comparison to previous theories. Furthermore, the new theory shows remarkably good agreement with test-particle simulations and heliospheric observations.