26 resultados para CERIUM OXIDE CATALYSTS

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ceria (CeO2) is a technologically important rare earth material because of its unique properties and various engineering and biological applications. A facile and rapid method has been developed to prepare ceria nanoparticles using microwave with the average size 7 nm in the presence of a set of ionic liquids based on the bis (trifluoromethylsulfonyl) imide anion and different cations of 1-alkyl-3-methyl-imidazolium. The structural features and optical properties of the nanoparticles were determined in depth with X-ray powder diffraction, transmission electron microscope, N-2 adsorption-desorption technique, dynamic light scattering (DLS) analysis, FTIR spectroscopy, Raman spectroscopy, UV-vis absorption spectroscopy, and Diffuse reflectance spectroscopy. The energy band gap measurements of nanoparticles of ceria have been carried out by UV-visible absorption spectroscopy and diffuse reflectance spectroscopy. The surface charge properties of colloidal ceria dispersions in ethylene glycol have been also studied. To the best of our knowledge, this is the first report on using this type of ionic liquids in ceria nanoparticle synthesis. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activity of a 5-wt% Cu/CeO2-x catalyst during preferential CO oxidation in hydrogen-rich gas mixtures was studied in a microchannel reactor. The CO concentration dropped from 1 vol.% to 10 ppm at a selectivity of 60%, at a temperature of 190 degrees C, and a weight hour space velocity (WHSV) of 55,000 cm(3) g(-1) h(-1). Both the CO concentration and the temperature increased when the WHSV was increased from 50,000 to 500,000 cm(3) g(-1) h(-1). An increase of the O-2 concentration from a 1.2 to 3 fold excess reduced the CO concentration to 10 ppm in a broad temperature interval of 50 degrees C at WHSVs up to 275,000 cm(3) g(-1) h(-1). The preferential CO oxidation could be carried out at higher flow rates and at higher selectivities in the microchannel reactor compared to a fixed-bed flow reactor. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrous cerium oxide (HCO) was synthesized by intercalation of solutions of cerium(III) nitrate and sodium hydroxide and evaluated as an adsorbent for the removal of hexavalent chromium from aqueous solutions. Simple batch experiments and a 25 factorial experimental design were employed to screen the variables affecting Cr(VI) removal efficiency. The effects of the process variables; solution pH, initial Cr(VI) concentration, temperature, adsorbent dose and ionic strength were examined. Using the experimental results, a linear mathematical model representing the influence of the different variables and their interactions was obtained. Analysis of variance (ANOVA) demonstrated that Cr(VI) adsorption significantly increases with decreased solution pH, initial concentration and amount of adsorbent used (dose), but slightly decreased with an increase in temperature and ionic strength. The optimization study indicates 99% as the maximum removal at pH 2, 20 °C, 1.923 mM of metal concentration and a sorbent dose of 4 g/dm3. At these optimal conditions, Langmuir, Freundlich and Redlich–Peterson isotherm models were obtained. The maximum adsorption capacity of Cr(VI) adsorbed by HCO was 0.828 mmol/g, calculated by the Langmuir isotherm model. Desorption of chromium indicated that the HCO adsorbent can be regenerated using NaOH solution 0.1 M (up to 85%). The adsorption interactions between the surface sites of HCO and the Cr(VI) ions were found to be a combined effect of both anion exchange and surface complexation with the formation of an inner-sphere complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combined experimental and theoretical investigation of the nature of the active form of gold in oxide-supported gold catalysts for the water gas shift reaction has been performed. In situ extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) experiments have shown that in the fresh catalysts the gold is in the form of highly dispersed gold ions. However, under water gas shift reaction conditions, even at temperatures as low as 100 degrees C, the evidence from EXAFS and XANES is only 14 consistent with rapid, and essentially complete, reduction of the gold to form metallic clusters containing about 50 atoms. The presence of Au-Ce distances in the EXAFS spectra, and the fact that about 15% of the gold atoms can be reoxidized after exposure to air at 150 degrees C, is indicative of a close interaction between a fraction (ca. 15%) of the gold atoms and the oxide support. Density functional theory (DFT) calculations are entirely consistent with this model and suggest that an important aspect of the active and stable form of gold under water gas shift reaction conditions is the location of a partially oxidized gold (Audelta+) species at a cerium cation vacancy in the surface of the oxide support. It is found that even with a low loading gold catalysts (0.2%) the fraction of ionic gold under water gas shift conditions is below the limit of detection by XANES (<5%). It is concluded that under water gas shift reaction conditions the active form of gold comprises small metallic gold clusters in intimate contact with the oxide support.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ceria (CeO2) and ceria-based composite materials, especially Ce1-xZrxO2 solid solutions, possess a wide range of applications in many important catalytic processes, such as three-way catalysts, owing to their excellent oxygen storage capacity (OSC) through the oxygen vacancy formation and refilling. Much of this activity has focused on the understanding of the electronic and structural properties of defective CeO2 with and without doping, and comprehending the determining factor for oxygen vacancy formation and the rule to tune the formation energy by doping has constituted a central issue in material chemistry related to ceria. However, the calculation on electronic structures and the corresponding relaxation patterns in defective CeO2-x oxides remains at present a challenge in the DFT framework. A pragmatic approach based on density functional theory with the inclusion of on-site Coulomb correction, i.e. the so-called DFT + U technique, has been extensively applied in the majority of recent theoretical investigations. Firstly, we review briefly the latest electronic structure calculations of defective CeO2(111), focusing on the phenomenon of multiple configurations of the localized 4f electrons, as well as the discussions of its formation mechanism and the catalytic role in activating the O-2 molecule. Secondly, aiming at shedding light on the doping effect on tuning the oxygen vacancy formation in ceria-based solid solutions, we summarize the recent theoretical results of Ce1-xZrxO2 solid solutions in terms of the effect of dopant concentrations and crystal phases. A general model on O vacancy formation is also discussed; it consists of electrostatic and structural relaxation terms, and the vital role of the later is emphasized. Particularly, we discuss the crucial role of the localized structural relaxation patterns in determining the superb oxygen storage capacity in kappa-phase Ce1-xZr1-xO2. Thirdly, we briefly discuss some interesting findings for the oxygen vacancy formation in pure ceria nanoparticles (NPs) uncovered by DFT calculations and compare those with the bulk or extended surfaces of ceria as well as different particle sizes, emphasizing the role of the electrostatic field in determining the O vacancy formation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spatial variability of conductivity in ceria is explored using scanning probe microscopy (SPM) with galvanostatic control. Ionically blocking electrodes are used to probe the conductivity under opposite polarities to reveal possible differences in the defect structure across a thin film of CeO2. Data suggests the existence of a large spatial inhomogeneity that could give rise to constant phase elements during standard electrochemical characterization, potentially affecting the overall conductivity of films on the macroscale. The approach discussed here can also be utilized for other mixed ionic electronic conductor (MIEC) systems including memristors and electroresistors, as well as physical systems such as ferroelectric tunneling barriers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Research on the selective reduction of NOx with hydrocarbons under lean-burn conditions using non-zeolitic oxides and platinum group metal (PGM) catalysts has been critically reviewed. Alumina and silver-promoted alumina catalysts have been described in detail with particular emphasis on an analysis of the various reaction mechanisms that have been put forward in the literature. The influence of the nature of the reducing agent, and the preparation and structure of the catalysts have also been discussed and rationalised for several other oxide systems. It is concluded for non-zeolitic oxides that species that are strongly adsorbed on the surface, such as nitrates/nitrites and acetates, could be key intermediates in the formation of various reduced and oxidised species of nitrogen, the further reaction of which leads eventually to the formation of molecular nitrogen. For the platinum group metal catalysts, the different mechanisms that have been proposed in the literature have been critically assessed. It is concluded that although there is indirect, mainly spectroscopic, evidence for various reaction intermediates on the catalyst surface, it is difficult to confirm that any of these are involved in a critical mechanistic step because of a lack of a direct quantitative correlation between infrared and kinetic measurements. A simple mechanism which involves the dissociation of NO on a reduced metal surface to give N(ads) and O(ads), with subsequent desorption of N-2 and N2O and removal of O(ads) by the reductant can explain many of the results with the platinum group metal catalysts, although an additional contribution from organo-nitro-type species may contribute to the overall NOx reduction activity with these catalysts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The nature of the silver phases of Ag/Al2O3 catalysts (prepared by silver nitrate impregnation followed by calcination) was investigated by X-ray diffractograms (XRD), transmission electron microscopy (TEM) and UV-VIS analyses and related to the activity of the corresponding materials for the oxidation of NO to NO2. The UV-VIS spectrum of the 1.2 wt.% Ag/Al2O3 exhibited essentially one band associated with Ag+ species and the NO2 yields measured over this material were negligible. A 10 wt.% Ag/Al2O3 material showed the presence of oxidic species of silver (as isolated Ag+ cations and silver aluminate), but the UV-VIS data also revealed the presence of some metallic silver. The activity for the NO oxidation to NO2 of this sample was moderate. The same 10% sample either reduced in H-2 or used for the C3H6-selective catalytic reduction (SCR) of NO showed a significantly larger proportion of silver metallic phases and these samples displayed a high activity for the formation of NO2. These data show that the structure and nature of the silver phases of Ag/Al2O3 catalysts can markedly change under reaction feed containing only a fraction of reducing agent (i.e. 500 ppm of propene) in net oxidizing conditions (2.5% O-2). The low activity for N-2 formation during the C3H6-SCR of NO (reported in an earlier study) over the high loading sample can. therefore, he related to the presence of metallic silver. which is yet a good catalyst for NO oxidation to NO2. The reverse observations apply for the oxide species observed over the low loading sample, which is a good SCR catalyst but do not oxidize NO to NO2. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A number of different, characterised, supported and unsupported oxides of Ru(IV) and Ir(IV) have been tested for activity as a chlorine catalyst in the oxidation of brine by Ce(IV) ions. All the different materials tested gave yields of chlorine of > 90% and first-order kinetics for the reduction of the Ce(IV) ions. The samples prepared by the Adams method were the most active of the materials tested and are typified by high surface areas and appreciable activities per unit area. The kinetics of the catalysed reduction of Ce(IV) ions by brine were studied in detail using an Ru(IV) oxide prepared by the Adams method and supported on TiO2 and the results were rationalised in terms of an electrochemical model in which the rate-determining step is the diffusion-controlled reduction of Ce(IV) ions. In support of this model the measured activation energies for the oxidation of brine by Ce(IV) ions, catalysed by either a supported or unsupported Adams catalyst, were both close (18-21 kJ mol-1) to that expected for a diffusion-controlled reaction (ca. 15 kJ mol-1).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The selective hydrogenation of ,-unsaturated aldehydes and ketones has been studied using ketoisophorone and cinnamaldehyde as model substrates using manganese oxide octahedral molecular sieve (OMS-2) based catalysts. For the first time, OMS-2 has been shown to be an efficient and selective hydrogenation catalyst. High selectivities for either the CC or CO double bond at approximate to 100% conversion were achieved by using OMS-2 and platinum supported on OMS-2 catalysts. Density functional theory (DFT) calculations showed that the dissociation of H2 on OMS-2 was water assisted and occurred on the surface Mn of OMS-2(001) that had been modified by an adsorbed H2O molecule. The theoretically calculated activation barrier was in good agreement with the experimentally determined value for the hydrogenation reactions, indicating that H2 dissociation on OMS-2 is likely to be the rate-determining step. A significant increase in the rate of reaction was observed in the presence of Pt as a result of the enhancement of H2 dissociative adsorption and subsequent reaction on the Pt or spillover of the hydrogen to the OMS-2 support. The relative adsorption strengths of ketoisophorone and cinnamaldehyde on the OMS-2 support compared with the Pt were found to determine the product selectivity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Porous manganese oxide (OMS-2) and platinum supported on OMS-2 catalysts have been shown to facilitate the hydrogenation of the nitro group on chloronitrobenzene to give chloroaniline with no dehalogenation. Complete conversion was obtained within 2 h at 25 [degree]C and, although the rate of reaction increased with increasing temperature up to 100 [degree]C, the selectivity to chloroaniline remained at 99.0%. Use of Pd/OMS-2 or Pt/Al2O3 resulted in significant dechlorination even at 25 [degree]C and 2 bar hydrogen pressure giving selectivity to chloroaniline of 34.5% and 77.8%, respectively, at complete conversion. This demonstrates the potential of using platinum group metal free catalysts for the selective hydrogenation of halogenated aromatics. Two pathways were observed for the analogous nitrobenzene hydrogenation depending on the catalyst used. The hydrogenation of nitrobenzene was found to follow a direct pathway to aniline and nitrosobenzene over Pd/OMS-2 in contrast to the OMS and Pt/OMS-2 catalysts which resulted in formation of nitrosobenzene, azoxybenzene and azobenzene/hydrazobenzene intermediates before complete conversion to aniline. These results indicate that for the Pt/OMS-2 the hydrogenation proceeds predominantly over the support with the metal acting to dissociate the hydrogen. In the case of the Pd/OMS-2 both the hydrogenation and the hydrogen adsorption occur on the metal sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CO oxidation on TiO2 supported Au has been studied using density functional theory calculations. Important catalytic roles of the oxide have been identified: (i) CO oxidation occurs at the interface between Au and the oxide with a very small barrier; and (ii) O-2 adsorption at the interface is the key step in the reaction. The physical origin of the oxide promotion effect has been further investigated: The oxide enhances electron transfer from the Au to the antibonding states of O-2, giving rise to (i) strong ionic bonding between the adsorbed O-2, Au, and the Ti cation; and (ii) a significant activation of O-2 towards CO oxidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production of hydrogen by steam reforming of bio-oils obtained from the fast pyrolysis of biomass requires the development of efficient catalysts able to cope with the complex chemical nature of the reactant. The present work focuses on the use of noble metal-based catalysts for the steam reforming of a few model compounds and that of an actual bio-oil. The steam reforming of the model compounds was investigated in the temperature range 650-950 degrees C over Pt, Pd and Rh supported on alumina and a ceria-zirconia sample. The model compounds used were acetic acid, phenol, acetone and ethanol. The nature of the support appeared to play a significant role in the activity of these catalysts. The use of ceria-zirconia, a redox mixed oxide, lead to higher H-2 yields as compared to the case of the alumina-supported catalysts. The supported Rh and Pt catalysts were the most active for the steam reforming of these compounds, while Pd-based catalysts poorly performed. The activity of the promising Pt and Rh catalysts was also investigated for the steam reforming of a bio-oil obtained from beech wood fast pyrolysis. Temperatures close to, or higher than, 800 degrees C were required to achieve significant conversions to COx and H-2 (e.g., H-2 yields around 70%). The ceria-zirconia materials showed a higher activity than the corresponding alumina samples. A Pt/ceria-zirconia sample used for over 9 h showed essentially constant activity, while extensive carbonaceous deposits were observed on the quartz reactor walls from early time on stream. In the present case, no benefit was observed by adding a small amount of O-2 to the steam/bio-oil feed (autothermal reforming, ATR), probably partly due to the already high concentration of oxygen in the bio-oil composition. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Functionalization of alkanes is much sought after for the production of fine and bulk chemicals. In particular, the oxidative activation of alkanes and their conversion to ethene and propene has been studied extensively, owing to the use of these alkenes in polymerization reactions. The greater reactivity of the products in comparison with the reactants has proven a major issue in this reaction as this can result in overoxidation, producing CO and CO2 and, therefore, reducing the alkene yield. Herein, the first application of supported gold catalysts for the direct activation of C2+ aliphatic alkanes with oxygen to form alkenes is demonstrated. This catalyst is particularly notable as it is highly active, selective to propene and ethene, and stable on stream over a 48 h period. Maintaining cationic gold is thought to be critical for the stability and this catalyst design provides the possibility of applying gold-based catalysts over a much wider temperature range than has been reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism of CO oxidation reactions over undoped and gold-doped CuMnOX (Hopcalite) catalysts has been examined using a temporal analysis of products (TAP) reactor Gold doping has been found to increase the activity of the mixed oxide catalyst significantly however using consecutive pulsing TAP experiments the presence of gold was not found to affect the contribution of the Langmuir-Hinshelwood mechanism Conversely gold doping was found to promote the Mars van Krevelen mechanism Using CO and O-2 multi-pulse TAP experiments the gold was found to modify the catalyst surface such that it stores much more oxygen that is active for the CO oxidation The CO multi-pulse experiments indicated that two distinct types of active oxygen species were found to be involved in the CO oxidation One type was observed in a similar amount on both doped and undoped catalysts and was associated with mixed oxide while the second type was only found on the gold-doped catalyst and was therefore clearly associated with the presence of gold on the catalyst surface The latter was found to be much less active than the oxygen inherent to the oxide but was at a concentration of approximately 10 times larger leading to the enhanced activity observed on gold doping (C) 2010 Elsevier Inc All rights reserved