38 resultados para CAPE FLORISTIC REGION

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Cederberg Mountains (Western Cape Province, South Africa) are located within the Fynbos Biome, which exhibits some of the highest levels of species richness and endemism in the world. The region's post-glacial vegetation history, however, remains largely unknown. Presented here are high resolution pollen and microcharcoal records spanning the last 15,600 years obtained from the De Rif rock hyrax midden from the Driehoek Valley of the central Cederberg. In this region, previous pollen studies have shown muted variability in vegetation community composition during periods of globally marked climatic variability (e.g. the last glacial-interglacial transition). In our record, however, significant changes in vegetation composition are apparent. Most notably, they indicate a shift from ericaceous/restioid fynbos (present from 15,600 to 13,300 cal yr BP) to a brief, but prominent, development of proteoid fynbos at the beginning of the Holocene around 11,200 cal yr BP. This vegetation shift is associated with increased moisture at the site, and coincides with reduced fire frequency as indicated by the microcharcoal record. At 10,400 cal yr BP, there is a marked reduction in Protea-type pollen, which is replaced by thicket, characterised by Dodonaea, which became the dominant arboreal pollen type. This shift was likely the result of a long relatively fire-free period coupled with warmer and wetter climates spanning much of the early Holocene. A brief but marked decrease in water availability around 8500-8000 cal yr BP resulted in the strong decrease of Dodonaea pollen. The vegetation of the mid- to late Holocene is characterised by the increased occurrence of Asteraceae and succulent taxa, suggesting substantially drier conditions. These data give unprecedented insight into the vegetation dynamics across a period of substantial, rapid climate change, and while they confirm the presence of fynbos elements throughout the last 15,600 years, the results highlight significant fluctuations in the vegetation that were triggered by changes in both climate and fire regimes. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

HSP70 chaperones mediate protein folding by ATP-dependent interaction with short linear peptide segments that are exposed on unfolded proteins. The mode of action of the Escherichia coli homolog DnaK is representative of all HSP70 chaperones, including the endoplasmic reticulum variant BiP/GRP78. DnaK has been shown to be effective in assisting refolding of a wide variety of prokaryotic and eukaryotic proteins, including the -helical homodimeric secretory cytokine interferon- (IFN-). We screened solid-phase peptide libraries from human and mouse IFN- to identify DnaK-binding sites. Conserved DnaK-binding sites were identified in the N-terminal half of helix B and in the C-terminal half of helix C, both of which are located at the IFN- dimer interface. Soluble peptides derived from helices B and C bound DnaK with high affinity in competition assays. No DnaK-binding sites were found in the loops connecting the -helices. The helix C DnaK-binding site appears to be conserved in most members of the superfamily of interleukin (IL)-10-related cytokines that comprises, apart from IL-10 and IFN-, a series of recently discovered small secretory proteins, including IL-19, IL-20, IL-22/IL-TIF, IL-24/MDA-7 (melanoma differentiation-associated gene), IL-26/AK155, and a number of viral IL-10 homologs. These cytokines belong to a relatively small group of homodimeric proteins with highly interdigitated interfaces that exhibit the strongly hydrophobic character of the interior core of a single-chain folded domain. We propose that binding of DnaK to helix C in the superfamily of IL-10-related cytokines may constitute the hallmark of a novel conserved regulatory mechanism in which HSP70-like chaperones assist in the formation of a hydrophobic dimeric "folding" interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The non-beta-amyloid (Aß) component of Alzheimer's disease amyloid (NAC) and its precursor a-synuclein have been linked to amyloidogenesis in several neurodegenerative diseases. NAC and a-synuclein both form ß-sheet structures upon ageing, aggregate to form fibrils, and are neurotoxic. We recently established that a peptide comprising residues 3±18 of NAC retains these properties. To pinpoint the exact region responsible we have carried out assays of toxicity and physicochemical properties on smaller fragments of NAC. Toxicity was measured by the ability of fresh and aged peptides to inhibit the reduction of the redox dye 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) by rat pheochromocytoma PC12 cells and human neuroblastoma SHSY-5Y cells. On immediate dissolution, or after ageing, the fragments NAC(8±18) and NAC(8±16) are toxic, whereas NAC(12±18), NAC(9±16) and NAC(8±15) are not. Circular dichroism indicates that none of the peptides displays ß-sheet structure; rather all remain random coil throughout 24 h. However, in acetonitrile, an organic solvent known to induce ß sheet, fragments NAC(8±18) and NAC(8±16) both form ß-sheet structure. Only NAC(8±18) aggregates, as indicated by concentration of peptide remaining in solution after 3 days, and forms fibrils, as determined by electron microscopy. These findings indicate that residues 8±16 of NAC, equivalent to residues 68±76 in a-synuclein, comprise the region crucial for toxicity.