30 resultados para By-products

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To get a better insight into the radiological features of industrial by-products that can be reused in building materials a review of the reported scientific data can be very useful. The current study is based on the continuously growing database of the By-BM (H2020-MSCA-IF-2015) project (By-products for Building Materials). Currently, the By-BM database contains individual data of about 431 by-products and 1095 building and raw materials. It was found that in case of the building materials the natural radionuclide content varied widely (Ra-226: <DL-27851 Bq/kg; Th-232: <DL-906 Bq/kg, K-40: <DL-17922 Bq/kg), more so than for the by-products (Ra-226: 7-3152 Bq/kg; Th-232: <DL-1350 Bq/kg, K-40: <DL-3001 Bq/kg). The average Ra-226, Th-232 and K-40 contents of the reported by-products were respectively 2.52, 2.35 and 0.39 times higher than the building materials. The gamma exposure of bulk building products was calculated according to IAEA Specific Safety Guide No. SSG-32 and the European Commission Radiation Protection 112 based I-index (EU BSS). It was found that in most cases the I-index without density consideration provides a significant overestimation in excess effective dose.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The previously reported preparation of 1,3-dimethylimidazolium salts by the reaction of 1,3-dialkylimidazolium-2-carboxylate zwitterions with protic acids has been reinvestigated in detail, leading to the identification of two competing reactions: isomerisation and decarboxylation. The ability to control both pathways allows this methodology to be used as an effective, green, waste-free approach to readily prepare a wide range of ionic liquids in high yields. Additionally, this reaction protocol opens new possibilities in the formation of other imidazolium salts, whose syntheses were previously either very expensive (due to ion exchange protocols involving metals like Ag) or difficult to achieve (due to multiple extractions and large quantities of hard to remove inorganic by-products).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Various industrial by-products, such as fly ash, ground granulated blast-furnace slag and silica fume, have been used in concrete to improve its properties. This also enables any environmental issues associated with their disposal. Another material that is available in large quantities and requiring alternative methods of disposal is the Bauxite Refinery Reside (BRR) from the Bayer process used to extract alumina from bauxite. As this is highly caustic and causes many health hazards, Virotec International Ltd. developed a patented technology to convert this into a material that can be used commercially, known as Bauxsol™, for various environmental remediation applications. This use is limited to small quantities of seawater-neutralised BRR and hence an investigation was carried out to establish its potential utilisation as a sand replacement material in concrete. In addition to fresh properties of concrete containing seawater-neutralised BRR up to 20% by mass of Portland cement, mechanical and durability properties were determined. These properties indicated that seawater-neutralised BRR can be used to replace natural sand up to 10% by mass of cement to improve the durability properties of concrete without detrimentally affecting their physical properties. Combining these beneficial effects with environmental remediation applications, it can be concluded that there are specific applications where concretes containing seawater-neutralised BRR could be used.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The decades of conflict in Northern Ireland created divisions between communities, with few opportunities for cooperation. However, in the 1990s opposition to a proposed cross-border incinerator brought the divided communities together. The 1990s economic boom in the Republic of Ireland generated a waste management crisis as the by-products of rampant consumerism overwhelmed the state's rudimentary waste disposal system. Three Irish anti-incinerator campaigns which have pitted local communities against the Irish state or the Northern Ireland Department of the Environment are examined. Community attempts to gain leverage within the political governance frameworks in operation on both sides of the border are examined and the various ways in which environmental movements respond to the crisis of waste management under different governance regimes are illuminated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reaction of 1-butylpyrrolidine with dimethyl carbonate to yield the ionic liquid precursor, 1-butyl-1-methylpyrrolidinium methylcarbonate, has been investigated under microwave heating conditions and the reaction parameters optimised to achieve 100% yield of the pyrrolidinium salt with no by-products in under 1 h. The reactions of tributylamine, trioctylphosphine, and 1-butylimidazole with dimethyl carbonate under comparable conditions have also been evaluated, yielding the corresponding methylcarbonate salts which can be used as intermediates for the preparation of halide-free ionic liquids without generating any undesirable salt wastes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study is the first investigation of biodegradation of carbon disulphide (CS2) in soil that provides estimates of degradation rates and identifies intermediate degradation products and carbon isotope signatures of degradation. Microcosm studies were undertaken under anaerobic conditions using soil and groundwater recovered from CS2-contaminated sites. Proposed degradation mechanisms were validated using equilibrium speciation modelling of concentrations and carbon isotope ratios. A first-order degradation rate constant of 1.25 × 10-2 h-1 was obtained for biological degradation with soil. Carbonyl sulphide (COS) and hydrogen sulphide (H2S) were found to be intermediates of degradation, but did not accumulate in vials. A 13C/12C enrichment factor of -7.5 ± 0.8 ‰ was obtained for degradation within microcosms with both soil and groundwater whereas a 13C/12C enrichment factor of -23.0 ± 2.1 ‰ was obtained for degradation with site groundwater alone. It can be concluded that biological degradation of both CS2-contaminated soil and groundwater is likely to occur in the field suggesting that natural attenuation may be an appropriate remedial tool at some sites. The presence of biodegradation by-products including COS and H2S indicates that biodegradation of CS2 is occurring and stable carbon isotopes are a promising tool to quantify CS2 degradation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Members of the taxonomically diverse Burkholderia cepacia complex have become a major health risk for patients with cystic fibrosis (CF). Although patient-to-patient transmission of B. cepacia strains has been well-documented, very little is known about possible vehicles of transmission and reservoirs for these micro-organisms. In this work, it is shown that strains of the B. cepacia complex can survive within different isolates of the genus Acanthamoeba. Trophozoites containing bacteria developed profuse cytoplasmic vacuolization. Vacuolization was not detected in trophozoites infected with live Escherichia coli or heat-killed B. cepacia, or by incubation of trophozoites with filter-sterilized culture supernatants, indicating that metabolically active intracellular bacteria are required for the formation of vacuoles. Experiments with two different B. cepacia strains and two different Acanthamoeba isolates revealed that bacteria display a low level of intracellular replication approximately 72-96 h following infection. In contrast, extracellular bacteria multiplied efficiently on by-products released by amoebae. The findings suggest that amoebae may be a reservoir for B. cepacia and possibly a vehicle for transmission of this opportunistic pathogen among CF patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Niger Coal Society (Societé Nigérienne de Charbon – SONICHAR) produces electricity for local consumption in Tefereyre, 75 km north-west from Agadez, Niger. The coal combustion residuals production is about 150,000 tons per year. In order to reduce this environmental burden and to valorize these by-products, a study focusing on their physical and chemical features as well as on the mechanical resistance of compressed brick has been undertaken. Physical characterization of coal slag, chemical and lixiviation tests have been carried out, assessing the material main parameters, verifying the presence of hazardous composites and elements and comparing the obtained results with the findings of an in-deep literary review. Cement powder has been chosen as stabilizing agent as a preliminary option. Four different dosages have been tested and bricks have been produced with a hand-operated press. Compressive strength has been tested at different days of curing. Results show remarkable uniaxial compressive strengths (UCS) for all the mixes after cure, ranging from 4MPa up to more than 20MPa for the highest stabilization ratio. UCS higher than 5MPa have been observed for 20% and 30% cement stabilization ratios after only 7 days of cure, reaching respectively about 11MPa and 13MPa after 45 days. In conclusion obtained bricks show good mechanical resistance and low weight. No health threat has been detected from the obtained sample. Study developments are oriented towards the feasibility of the utilization of low-cost, locally available stabilization means, notably clay and cohesive soils, and on thermal properties assessment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bioprospecting has led to increased interest in potential applications for marine organisms and their by-products. As a rich source of mineralising porous organisms, our seas and oceans could provide new directions for bone tissue engineering particularly in the supply of biomimetic templates that may enhance in vivo and ex vivo bone formation. In this chapter we examine the history of marine organism use in this field; exploring how these organisms could be utilised, given the problems of sustainability, and reviewing the current evidence to support their use for bone repair and regeneration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cyanobacterial toxins present in drinking water sources pose a considerable threat to human health. Conventional water treatment systems have proven unreliable for the removal of these toxins and hence new techniques have been investigated. Previous work has shown that TiO2 photocatalysis effectively destroys microcystin-LR in aqueous solutions, however, a variety of by-products were generated. In this paper, we report a mechanistic study of the photocatalytic destruction of microcystin-LR. In particular, the toxicity by-products of the process have been studied using both brine shrimp and protein phosphatase bioassays. 

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cyanobacterial toxins present in drinking water sources pose a considerable threat to human health. Conventional water treatment systems have proven unreliable for the removal of these toxins and hence new techniques have been investigated. Previous work has shown that TiO2 photocatalysis effectively destroys microcystin-LR in aqueous solutions, however non-toxic by-products were detected. It has been shown that photocatalytic reactions are enhanced by utilisation of alternative electron acceptors. We report here enhanced photocatalytic degradation of microcystin-LR following the addition of hydrogen peroxide to the system. It was also found that hydrogen peroxide with UV illumination alone was capable of decomposing microcystin-LR although at a much slower rate than found for TiO2. No HPLC detectable by-products were found when the TiO2/UV/H2O2 system was used indicating that this method is more effective than TiO2/UV alone. Results however indicated that only 18% mineralisation occurred with the TiO2/UV/H2O2 system and hence undetectable by-products must still be present. At higher concentrations hydrogen peroxide was found to compete with microcystin-LR for surface sites on the catalyst but at lower peroxide concentrations this competitive adsorption was not observed. Toxicity studies showed that both in the presence and absence of H2O2 the microcystin solutions were detoxified. These findings suggest that hydrogen peroxide greatly enhances the photocatalytic oxidation of microcystin-LR.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New environmentally acceptable production methods are required to help reduce the environmental impact of many industrial processes. One potential route is the application of photocatalysis using semiconductors. This technique has enabled new environmentally acceptable synthetic routes for organic synthesis which do not require the use of toxic metals as redox reagents. These photocatalysts also have more favourable redox potentials than many traditional reagents. Semiconductor photocatalysis can also be applied to the treatment of polluted effluent or for the destruction of undesirable by-products of reactions. In addition to the clean nature of the process the power requirements of the technique can be relatively low, with some reactions requiring only sunlight. 

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bioenergy is a key component of the European Union long term energy strategy across all sectors, with a target contribution of up to 14% of the energy mix by 2020. It is estimated that there is the potential for 1TWh of primary energy from biogas per million persons in Europe, derived from agricultural by-products and waste. With an agricultural sector that accounts for 75% of land area and a large number of advanced engineering firms, Northern Ireland is a region with considerable potential for an integrated biogas industry. Northern Ireland is also heavily reliant on imported fossil fuels. Despite this, the industry is underdeveloped and there is a need for a collaborative approach from research, business and policy-makers across all sectors to optimise Northern Ireland’s abundant natural resources. ‘Developing Opportunities in Bio-Energy’ (i.e. Do Bioenergy) is a recently completed project that involved both academic and specialist industrial partners. The aim was to develop a biogas research action plan for 2020 to define priorities for intersectoral regional development, co-operation and knowledge transfer in the field of production and use of biogas. Consultations were held with regional stakeholders and working groups were established to compile supporting data, decide key objectives and implementation activities. Within the context of this study it was found that biogas from feedstocks including grass, agricultural slurry, household and industrial waste have the potential to contribute from 2.5% to 11% of Northern Ireland’s total energy consumption. The economics of on-farm production were assessed, along with potential markets and alternative uses for biogas in sectors such as transport, heat and electricity. Arising from this baseline data, a Do Bioenergy was developed. The plan sets out a strategic research agenda, and details priorities and targets for 2020. The challenge for Northern Ireland is how best to utilise the biogas – as electricity, heat or vehicle fuel and in what proportions. The research areas identified were: development of small scale solutions for biogas production and use; solutions for improved nutrient management; knowledge supporting and developing the integration of biogas into the rural economy; and future crops and bio-based products. The human resources and costs for the implementation were estimated as 80 person-years and £25 million respectively. It is also clear that the development of a robust bio-gas sector requires some reform of the regulatory regime, including a planning policy framework and a need to address social acceptance issues. The Action Plan was developed from a regional perspective but the results may be applicable to other regions in Europe and elsewhere. This paper presents the methodology, results and analysis, and discussion and key findings of the Do Bioenergy report for Northern Ireland.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acute respiratory distress syndrome (ARDS) is a devastating disorder characterized by increased alveolar permeability with no effective treatment beyond supportive care. Current mechanisms underlying ARDS focus on alveolar endothelial and epithelial injury caused by products of innate immune cells and platelets. However, the role of adaptive immune cells in ARDS remains largely unknown. In this study, we report that expansion of Ag-specific αβTh17 cells contributes to ARDS by local secretion of IL-17A, which in turn directly increases alveolar epithelial permeability. Mice with a highly restrictive defect in Ag-specific αβTh17 cells were protected from experimental ARDS induced by a single dose of endotracheal LPS. Loss of IL-17 receptor C or Ab blockade of IL-17A was similarly protective, further suggesting that IL-17A released by these cells was responsible for this effect. LPS induced a rapid and specific clonal expansion of αβTh17 cells in the lung, as determined by deep sequencing of the hypervariable CD3RβVJ region of the TCR. Our findings could be relevant to ARDS in humans, because we found significant elevation of IL-17A in bronchoalveolar lavage fluid from patients with ARDS, and rIL-17A directly increased permeability across cultured human alveolar epithelial monolayers. These results reveal a previously unexpected role for adaptive immune responses that increase alveolar permeability in ARDS and suggest that αβTh17 cells and IL-17A could be novel therapeutic targets for this currently untreatable disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and Objectives: Gingival fibroblasts play a significant role in the innate immune response of the periodontium to bacterial stimulation. A number of microorganisms and their by-products induce a host response that commonly leads to tissue destruction and periodontal disease progression. LL-37 is an antimicrobial peptide which has multiple roles in host defence including immunomodulation and wound-healing. We have investigated the role of LL-37 on the responsiveness of human gingival fibroblasts to microbial challenge from E. coli lipopolysaccharide (LPS) and P. gingivalis LPS, as well as exploring the direct effects of LL-37 on human gingival fibroblasts. Methods: The effect of LL-37 on bacterial LPS-induced expression of IL-6 and IL-8 by gingival fibroblasts was determined by ELISA. The influence of LL-37 on bacterial LPS-induced IκBα degradation in human gingival fibroblasts was investigated by western blot. The direct effects of LL-37 on modulating gingival fibroblasts gene expression were initially determined by DNA microarray analysis and subsequently confirmed by quantitative polymerase chain reaction (Q-PCR) and ELISA analysis of 9 selected genes. Results: Bacterial LPS-induced IL-8 and IL-6 production by human gingival fibroblasts were significantly reduced in the presence of LL-37 at concentrations in the range of 1-10 µg/ml (p<0.05). The presence of LL-37 at a concentration of 5 µg/ml led to a reduction in LPS-induced IκBα degradation by E. coli LPS (100 ng/ml) and P. gingivalis LPS (10 µg/ml). LL-37 (50 µg/ml) significantly altered the gene expression of 367 genes in human gingival fibroblasts by at least 2-fold. CXCL1, CXCL2, CXCL3, IL-24, IL-8, CCL2, and SOCS3 mRNA were significantly upregulated by LL-37 (p<0.05). LL-37 also significantly stimulated expression of IL-8, hepatocyte growth factor (HGF) and CXCL1 (p<0.05) at the protein level. Discussion: LL-37 plays an important role in the innate immune response due to its broad spectrum antimicrobial and immunomodulatory activity. The ability of LL-37 to directly regulate expression of a range of genes, central to the pathogenesis of periodontitis, identifies multiple roles for the peptide in host homeostasis.