9 resultados para Buildings, structures

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

60.00% 60.00%

Publicador:

Resumo:

<p>A companion paper described the partial-interaction localised properties that require the development of pseudo properties. If the quantification through experimental testing of these pseudo properties could be removed by the use of mechanics-based models, which is the subject of this paper, then this would: (a) substantially reduce the cost of developing new reinforced concrete products by reducing the amount of testing; (b) increase the accuracy of designing existing and novel reinforced concrete members and structures, bearing in mind that experimentally derived pseudo properties are only applicable within the range of the testing from which they were derived; and (c) reduce the cost and increase the accuracy of developing reinforced concrete design rules. This paper deals with the development of pseudo properties and behaviours directly through mechanics, as opposed to experimental testing, and their incorporation into member global simulations. It also addresses the need for a fundamental shift to displacement-based analyses as opposed to strain-based analyses.</p>

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the results of a full-scale site fire test performed on a cold-formed steel portal frame building with semi-rigid joints. The purpose of the study is to establish a performance-based approach for the design of such structures in fire boundary conditions. In the full-scale site fire test, the building collapsed asymmetrically at a temperature of 714°C. A non-linear elasto-plastic finite-element shell model is described and is validated against the results of the full-scale test. A parametric study is presented that highlights the importance of in-plane restraint from the side rails in preventing an outwards sway failure for both a single portal and full building geometry model. The study also demonstrates that the semi-rigidity of the joints should be taken into account in the design. The single portal and full building geometry models display a close match to site test results with failure at 682°C and 704°C, respectively. A design case is described in accordance with Steel Construction Institute design recommendations. The validated single portal model is tested with pinned bases, columns protected, realistic loading and rafters subject to symmetric uniform heating in accordance with the ISO 834 standard fire curve; failure occurs at 703°C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmental controls on stone decay processes are rapidly changing as a result of changing climate. UKCP09 projections for the 2020s (2010â2039) indicate that over much of the UK seasonality of precipitation will increase. Summer dryness and winter wetness are both set to increase, the latter linked to projected precipitation increases in autumn and spring months. If so, this could increase the time that stone structures remain wet and possibly the depth of moisture penetration, and it appears that building stone in Northern Ireland has already responded through an increased incidence of algal â˜greeningâ.This paper highlights the need for understanding the effects of climate change through a series of studies of largely sandstone structures. Current and projected climatic trends are therefore considered to have aesthetic, physical and chemical implications that are not currently built into our models of sandstone decay, especially with respect to the role played by deep-seated wetness on sandstone deterioration and decay progression and the feedbacks associated with, for example surface algal growth. In particular,it is proposed that algal biofilms will aid moisture retention and further facilitate moisture and dissolved salt penetration to depth. Thus, whilst the outer surface of stone may continue to experience frequent wetting and drying associated with individual precipitation events, the latter is less likely to be complete, and the interiors of building blocks may only experience wetting/drying in response to seasonal cycling. A possible consequence of deeper salt penetration could be a delay in the onset of surface deterioration,but more rapid and effective retreat once it commences as decay mechanisms â˜tap into a reservoir of deep saltâ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Following automation of lighthouses around the coastline of Ireland, reports of accelerated deterioration of interior granite stonework have increased significantly with an associated deterioration in the historic structure and rise in related maintenance costs. Decay of granite stone- work primarily occurs through granular disintegration with the effective grusification of granite surfaces. A decay gradient exists within the towers whereby the condition of granite in the lower levels is much worse than elsewhere. The lower tower levels are also regions with highest rela- tive humidity values and greatest salt concentrations. Data indicate that post-automation decay may have been trig- gered by a change in micro-environmental conditions within the towers associated with increased episodes of condensation on stone surfaces. This in turn appears to have facilitated deposition and accumulation of hygro- scopic salts (e.g. NaCl) giving rise to widespread evidence of deliquescence in the lower tower levels. Evidence indicates that the main factors contributing to accelerated deterioration of interior granite stonework are changes in micro-environmental conditions, salt weathering, chemical weathering through the corrosive effect of strongly alkaline conditions on alumino-silicate minerals within the granite and finally, the mica-rich characteristics of the granite itself which increases its structural and chemical susceptibility to subaerial weathering processes by creating points of weakness within the granite. This case study demonstrates how seemingly minor changes in micro-environmental conditions can unintentionally trigger the rapid and extensive deterioration of a previously stable rock type and threaten the long-term future of nationally iconic opera- tional historic structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A methodology is presented that combines a multi-objective evolutionary algorithm and artificial neural networks to optimise single-storey steel commercial buildings for net-zero carbon impact. Both symmetric and asymmetric geometries are considered in conjunction with regulated, unregulated and embodied carbon. Offsetting is achieved through photovoltaic (PV) panels integrated into the roof. Asymmetric geometries can increase the south facing surface area and consequently allow for improved PV energy production. An exemplar carbon and energy breakdown of a retail unit located in Belfast UK with a south facing PV roof is considered. It was found in most cases that regulated energy offsetting can be achieved with symmetric geometries. However, asymmetric geometries were necessary to account for the unregulated and embodied carbon. For buildings where the volume is large due to high eaves, carbon offsetting became increasingly more difficult, and not possible in certain cases. The use of asymmetric geometries was found to allow for lower embodied energy structures with similar carbon performance to symmetrical structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design optimization of a cold-formed steel portal frame building is considered in this paper. The proposed genetic algorithm (GA) optimizer considers both topology (i.e., frame spacing and pitch) and cross-sectional sizes of the main structural members as the decision variables. Previous GAs in the literature were characterized by poor convergence, including slow progress, that usually results in excessive computation times and/or frequent failure to achieve an optimal or near-optimal solution. This is the main issue addressed in this paper. In an effort to improve the performance of the conventional GA, a niching strategy is presented that is shown to be an effective means of enhancing the dissimilarity of the solutions in each generation of the GA. Thus, population diversity is maintained and premature convergence is reduced significantly. Through benchmark examples, it is shown that the efficient GA proposed generates optimal solutions more consistently. A parametric study was carried out, and the results included. They show significant variation in the optimal topology in terms of pitch and frame spacing for a range of typical column heights. They also show that the optimized design achieved large savings based on the cost of the main structural elements; the inclusion of knee braces at the eaves yield further savings in cost, that are significant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design optimization of cold-formed steel portal frame buildings is considered in this paper. The objective function is based on the cost of the members for the main frame and secondary members (i.e., purlins, girts, and cladding for walls and roofs) per unit area on the plan of the building. A real-coded niching genetic algorithm is used to minimize the cost of the frame and secondary members that are designed on the basis of ultimate limit state. It iis shown that the proposed algorithm shows effective and robust capacity in generating the optimal solution, owing to the population's diversity being maintained by applying the niching method. In the optimal design, the cost of purlins and side rails are shown to account for 25% of the total cost; the main frame members account for 27% of the total cost, claddings for the walls and roofs accounted for 27% of the total cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optimisation is based on a combination of neural networks and evolutionary algorithm. It has selected buildings with different midpoint configurations with zero carbon impacts. With operational energy included the structures could be offset with asymmetry.