15 resultados para Building sustainability
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Environmental problems, especially climate change, have become a serious global issue waiting for people to solve. In the construction industry, the concept of sustainable building is developing to reduce greenhouse gas emissions. In this study, a building information modeling (BIM) based building design optimization method is proposed to facilitate designers to optimize their designs and improve buildings’ sustainability. A revised particle swarm optimization (PSO) algorithm is applied to search for the trade-off between life cycle costs (LCC) and life cycle carbon emissions (LCCE) of building designs. In order tovalidate the effectiveness and efficiency of this method, a case study of an office building is conducted in Hong Kong. The result of the case study shows that this method can enlarge the searching space for optimal design solutions and shorten the processing time for optimal design results, which is really helpful for designers to deliver an economic and environmental friendly design scheme.
Resumo:
The coupled heat, air and moisture transfer between building envelopes and indoor air is complicated, and has a significant influence on the indoor environment and the energy performance of buildings. In the paper, a model for predicting coupled multi-zone hygrothermal-airflow transfer is presented. Both heat and moisture transfer in the building envelope and multi-zone indoor airflow are simultaneously considered; their interactions are modeled. The coupled system model is implemented into Matlab–Simulink, and is validated by using a series of testing tools and experiments. The new program is applied to investigate the moisture transfer effect on indoor air humidity and building energy consumption in different climates (hot-humid, temperate and hot-dry climates). The results show that not accounting for hygrothermal effects in modeling will result in overestimation of energy costs for hot and humid climate situations and possible over sizing of plant leading to inefficient operation.
Resumo:
A study undertaken at the University of Liverpool has investigated the potential for using recycled demolition aggregate in the manufacture of precast concrete building blocks. Recycled aggregates derived from construction and demolition waste (C&DW) can be used to replace quarried limestone aggregate, usually used in coarse (6 mm) and fine (4 mm-to-dust) gradings. The manufacturing process used in factories, for large-scale production, involves a “vibro-compaction” casting procedure, using a relatively dry concrete mix with low cement content (˜100 kg/m3). Trials in the laboratory successfully replicated the manufacturing process using a specially modified electric hammer drill to compact the concrete mix into oversize steel moulds to produce blocks of the same physical and mechanical properties as the commercial blocks. This enabled investigations of the effect of partially replacing newly quarried with recycled demolition aggregate on the compressive strength of building blocks to be carried out in the laboratory. Levels of replacement of newly quarried with recycled demolition aggregate have been determined that will not have significant detrimental effect on the mechanical properties. Factory trials showed that there were no practical problems with the use of recycled demolition aggregate in the manufacture of building blocks. The factory strengths obtained confirmed that the replacement levels selected, based on the laboratory work, did not cause any significant strength reduction, i.e. there was no requirement to increase the cement content to maintain the required strength, and therefore there would be no additional cost to the manufacturers if they were to use recycled demolition aggregate for their routine concrete building block production.
Hygrothermal Features of Laterite Dimension Stones for Sub-Saharan Residential Building Construction
Resumo:
The building sector is widely recognized as having a major impact on sustainable development. Both in developed and developing countries, sustainability in buildings approaches are growing. Laterite dimension stone (LDS) is a building material that was traditionally used in sub-Saharan Africa, but its technical features still need to be assessed. This article presents some results of a study focused on the characterization of LDS exploited in Burkina Faso for building purposes. The measured average thermal conductivity is 0.51 W/mK, which increases with water content and evolves with the specific gravity and with porosity. Rock mineral phases (quartz, goethite, hematite, magnetite) are cemented by kaolinite. The porosity of the material is high (30%), with macropores visible on the surface and found in the rock inner structure as well. Results from the hygrothermal monitoring of a pilot building are also presented.
Resumo:
The sustainability of cross-border peacebuilding initiatives is increasingly pertinent in a context of reduced public funding (national and European), yet the potential contribution to be made to this from private sector cooperation remains under-explored. This paper brings together quantitative data on cross-border trade with qualitative evidence from business leaders in the Irish border region in order to examine the nature of cross-border cooperation within the private sector and its possible connections to peacebuilding. This evidence is analysed in the light of three theses: spillover, contact and business-based peacebuilding. The first part of this paper assesses the conditions for cross-border business cooperation in Ireland, including funding support for economic development, European integration, and (post-Agreement) institutional change. The second part examines the particular contributions made by the private sector to peace, centring upon consciously non-political motivations (such as pragmatism and profit), networking and leadership.
Resumo:
A theoretical approach has been used to evaluate the performance of facade integrated solar collectors based on the physical collector parameters such as absorber plate absorptance, transmittance of the glazed cover plate and insulation thickness. A 1D steady state model, based on the Hottel Whillier Bliss equation, was employed to determine the effect of changing parameters to meet façade integration criteria.
Resumo:
Global warming, energy savings, and life cycle analysis issues are factors that have contributed to the rapid expansion of plant-based materials for buildings, which can be qualified as environmental-friendly, sustainable and efficient multifunctional materials. This review presents an overview on the several possibilities developed worldwide about the use of plant aggregate to design bio-based building materials. The use of crushed vegetal aggregates such as hemp (shiv), flax, coconut shells and other plants associated to mineral binder represents the most popular solution adopted in the beginning of this revolution in building materials. Vegetal aggregates are generally highly porous with a low apparent density and a complex architecture marked by a multi-scale porosity. These geometrical characteristics result in a high capacity to absorb sounds and have hygro-thermal transfer ability. This is one of the essential characteristics which differ of vegetal concrete compared to the tradition mineral-based concretes. In addition, the high flexibility of the aggregates leads to a non-fragile elasto-plastic behavior and a high deformability under stress, lack of fracturing and marked ductility with absorbance of the strains ever after having reached the maximum mechanical strength. Due to the sensitivity to moisture, the assessment of the durability of vegetal concrete constitutes one of the next scientific challenging of bio-based building materials.
Resumo:
An assessment of the sustainability of the Irish economy has been carried out using three methodologies, enabling comparison and evaluation of the advantages and disadvantages of each, and potential synergies among them. The three measures chosen were economy-wide Material Flow Analysis (MFA), environmentally extended input-output (EE-IO) analysis and the Ecological Footprint (EF). The research aims to assess the sustainability of the Irish economy using these methods and to draw conclusions on their effectiveness in policy making both individually and in combination. A theoretical description discusses the methods and their respective advantages and disadvantages and sets out a rationale for their combined application. The application of the methods in combination has provided insights into measuring the sustainability of a national economy and generated new knowledge on the collective application of these methods. The limitations of the research are acknowledged and opportunities to address these and build on and extend the research are identified. Building on previous research, it is concluded that a complete picture of sustainability cannot be provided by a single method and/or indicator.