169 resultados para Broadband Communication
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
This paper proposes millimeter wave (mmWave) mobile broadband for achieving secure communication in downlink cellular network. Analog beamforming with phase shifters is adopted for the mmWave transmission. The secrecy throughput is analyzed based on two different transmission modes, namely delay-tolerant transmission and delay-limited transmission. The impact of large antenna arrays at the mmWave frequencies on the secrecy throughput is examined. Numerical results corroborate our analysis and show that mmWave systems can enable significant secrecy improvement. Moreover, it is indicated that with large antenna arrays, multi-gigabit per second secure link at the mmWave frequencies can be reached in the delay-tolerant transmission mode and the adverse effect of secrecy outage vanishes in the delay-limited transmission mode.
Resumo:
Chapter eleven on Mm-wave broadband wireless systems and enabling MMIC technologies, is contributed by Jian Zhang, Mury Thian, Guochi Huang, George Goussetis and Vincent F. Fusco, from Queen's University Belfast, UK. Millimeter wave bands provide large available bandwidths for high data rate wireless communication systems, which are envisaged to shift data throughput well in the GBps range. This capability has over past few years driven rapid developments in the technology underpinning broadband wireless systems as well as in the standardisation activity from various non-governmental consortia and the band allocation from spectrum regulators globally. This chapter provides an overview of the recent developments on V-band broadband wireless systems with the emphasis placed on enabling MMIC technologies. An overview of the key applications and available standards is presented. System-level architectures for broadband wireless applications are being reviewed. Examples of analysis, design and testing on MMIC components in SiGe BiCMOS are presented and the outlook of the technology is discussed.
Resumo:
Plane wave scattering from a flat surface consisting of two periodic arrays of ring elements printed on a grounded dielectric sheet is investigated. It is shown that the reflection phase variation as a function of ring diameter is controlled by the difference in the centre resonant frequency of the two arrays. Simulated and measured results at X-band demonstrate that this parameter can be used to reduce the gradient and improve the linearity of the reflection phase versus ring size slope. These are necessary conditions for the re-radiating elements to maximise the bandwidth of a microstrip reflectarray antenna. The scattering properties of a conventional dual resonant multilayer structure and an array of concentric rings printed on a metal backed dielectric substrate are compared and the trade-off in performance is discussed.