33 resultados para Branxholme Nature Conservation Reserve
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
During the last decade Quaternary pollen analysis has developed towards improved pollen-taxonomical precision, automated pollen identification and more rigorous definition of pollen assemblage zones. There have been significant efforts to model the spatial representation of pollen records in lake sediments which is important for more precise interpretation of the pollen records in terms of past vegetation patterns. We review the difficulties in matching modelled post-glacial plant migration patterns with pollen-based palaeorecords and discuss the potential of DNA analysis of pollen to investigate the ancestry and past migration pathways of the plants. In population ecology there has been an acceleration of the widely advocated conceptual advance of pollen-analytical research from vaguely defined ‘environmental reconstructions’ towards investigating more precisely defined ecological problems aligned with the current ecological theories. Examples of such research have included an increasing number of investigations about the ecological impacts of past disturbances, often integrating pollen records with other palaeoecological data. Such an approach has also been applied to incorporate a time perspective to the questions of ecosystem restoration, nature conservation and forest management. New lines of research are the use of pollen analysis to study long-term patterns of vegetation diversity, such as the role of glacial-age vegetation fragmentation as a cause of Amazonian rain forest diversity, and to investigate links between pollen richness and past plant diversity. Palaeoclimatological use of pollen records has become more quantitative and has included more precise and rigorous testing of pollen-climate calibration models with modern climate data. These tests show the approximate nature of the models and warn against a too straightforward climatic interpretation of the small-scale variation in reconstructions. Pollenbased climate reconstructions over the Late Glacial–early Holocene boundary have indicated that pollen-stratigraphical changes have been rapid with no evidence for response lags. This does not rule out the possibility of migrational disequilibrium, however, as the rapid changes may be mostly due to nonmigrational responses of existing vegetation. It is therefore difficult to assess whether the amplitude of reconstructed climate change reflects real climate change. Other outstanding problems remain the obscure relationship of pollen production and climate, the role of human impact and other nonclimatic factors, and nonanalogue situations.
Resumo:
1. One of the goals for Natura 2000, a key European Community programme of nature conservation, is to produce a network of protected areas. An analysis of the Natura 2000 marine sites proposed in the most recently agreed list for the Atlantic region (northern Portugal to Denmark, n = 298) was used to characterize the network in terms of site areas and inter-site distances. Sites were considered as part of the network when they included any of the marine Natura 2000 Annex I habitat types found in the Atlantic region (excluding lagoons).
Resumo:
The efficacy of ‘sod removal’ as a fenland restoration technique was tested using an experimental approach at Montiaghs Moss Nature Reserve, Northern Ireland, from 2006 to 2008. The site suffered from rank growth of purple moor-grass Molinia caerulea which was out-competing herbaceous species. Soil was removed up to a depth of 15 cm completely denuding vegetation in the experimental plot exposing bare peat. By July 2007, 15.2% of sod-removal areas were revegetated; by October 2008 cover had risen to 64.6%. Of this cover, purple moor-grass accounted for only 9-11% compared to 78- 79% on control plots. Cover of other rank-forming grass species was also significantly reduced. Sod removal significantly increased the cover of species characteristic of fenlands including sedges Carex spp., rushes Juncus spp., marsh pennywort Hydrocotyle vulgaris and lesser spearwort Ranunculus flammula. It seems likely that sod removal, which lowered the surface of the peat, restored minerotrophic conditions and exposed the historical seed bank stimulating regeneration of some fenland specialists and pioneer species; this resulted in significantly higher species richness on sod removal plots than control plots two years after treatment. There was no demonstrable effect of sod removal on abundance of devil’s-bit scabious Succisa pratensis, the larval food plant of the Annex II listed marsh fritillary butterfly Euphydryas aurinia. We recommend that consideration should be given to artificially seeding devil’s-bit scabious soon after sod removal treatment to promote early recolonisation and to increase plant abundance on the site.
Resumo:
A conservation priority in the marine environment is the establishment of ecologically coherent reserve networks. Since these networks will integrate existent reserves, an understanding of spatial genetic diversity and genetic connectivities between areas is necessary. Using Strangford Lough marine nature reserve (MNR) as a model, spatial genetic analyses were employed to evaluate the function of the lough. Samples of the marine gastropod Nucella lapillus (L.) from 7 locations in the reserve and adjacent areas were screened at 6 microsatellites. Genetic variation was temporally stable. Significant genetic structuring (F-ST = 0.133) was observed among samples. Genetic divergence and isolation by distance indicated reduced gene flow between the marine reserve and coastal samples relative to that between adjacent coastal samples. Partitioning of genetic variation between the reserve and coast was significant (AMOVA, 7.45%, p
Resumo:
Although data quality and weighting decisions impact the outputs of reserve selection algorithms, these factors have not been closely studied. We examine these methodological issues in the use of reserve selection algorithms by comparing: (1) quality of input data and (2) use of different weighting methods for prioritizing among species. In 2003, the government of Madagascar, a global biodiversity hotspot, committed to tripling the size of its protected area network to protect 10% of the country’s total land area. We apply the Zonation reserve selection algorithm to distribution data for 52 lemur species to identify priority areas for the expansion of Madagascar’s reserve network. We assess the similarity of the areas selected, as well as the proportions of lemur ranges protected in the resulting areas when different forms of input data were used: extent of occurrence versus refined extent of occurrence. Low overlap between the areas selected suggests that refined extent of occurrence data are highly desirable, and to best protect lemur species, we recommend refining extent of occurrence ranges using habitat and altitude limitations. Reserve areas were also selected for protection based on three different species weighting schemes, resulting in marked variation in proportional representation of species among the IUCN Red List of Threatened Species extinction risk categories. This result demonstrates that assignment of species weights influences whether a reserve network prioritizes maximizing overall species protection or maximizing protection of the most threatened species.
Resumo:
Ecological coherence is a multifaceted conservation objective that includes some potentially conflicting concepts. These concepts include the extent to which the network maximises diversity (including genetic diversity) and the extent to which protected areas interact with non-reserve locations. To examine the consequences of different selection criteria, the preferred location to complement protected sites was examined using samples taken from four locations around each of two marine protected areas: Strangford Lough and Lough Hyne, Ireland. Three different measures of genetic distance were used: FST, Dest and a measure of allelic dissimilarity, along with a direct assessment of the total number of alleles in different candidate networks. Standardized site scores were used for comparisons across methods and selection criteria. The average score for Castlehaven, a site relatively close to Lough Hyne, was highest, implying that this site would capture the most genetic diversity while ensuring highest degree of interaction between protected and unprotected sites. Patterns around Strangford Lough were more ambiguous, potentially reflecting the weaker genetic structure around this protected area in comparison to Lough Hyne. Similar patterns were found across species with different dispersal capacities, indicating that methods based on genetic distance could be used to help maximise ecological coherence in reserve networks. ⺠Ecological coherence is a key component of marine protected area network design. ⺠Coherence contains a number of competing concepts. ⺠Genetic information from field populations can help guide assessments of coherence. ⺠Average choice across different concepts of coherence was consistent among species. ⺠Measures can be combined to compare the coherence of different network designs.