3 resultados para Bragg gratings

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the design and implementation of a novel optical fiber temperature compensated relative humidity (RH) sensor device, based on fiber Bragg gratings (FBGs) and developed specifically for monitoring water ingress leading to the deterioration of building stone. The performance of the sensor thus created, together with that of conventional sensors, was first assessed in the laboratory where they were characterized under experimental conditions of controlled wetting and drying cycles of limestone blocks, before being employed “in-the-field” to monitor actual building stone in a specially built wall. Although a new construction, this was built specifically using conservation methods similar to those employed in past centuries, to allow an accurate simulation of processes occurring with wetting and drying in the historic walls in the University of Oxford.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents an innovative sensor system, created specifically for new civil engineering structural monitoring applications, allowing specially packaged fiber grating-based sensors to be used in harsh, in-the-field measurement conditions for accurate strain measurement with full temperature compensation. The sensor consists of two fiber Bragg gratings that are protected within a polypropylene package, with one of the fiber gratings isolated from the influence of strain and thus responding only to temperature variations, while the other is sensitive to both strain and temperature. To achieve this, the temperature-monitoring fiber grating is slightly bent and enclosed in a metal envelope to isolate it effectively from the strain. Through an appropriate calibration process, both the strain and temperature coefficients of each individual grating component when incorporated in the sensor system can be thus obtained. By using these calibrated coefficients in the operation of the sensor, both strain and temperature can be accurately determined. The specific application for which these sensors have been designed is seen when installed on an innovative small-scale flexi-arch bridge where they are used for real-time strain measurements during the critical installation stage (lifting) and loading. These sensors have demonstrated enhanced resilience when embedded in or surface-mounted on such concrete structures, providing accurate and consistent strain measurements not only during installation but subsequently during use. This offers an inexpensive and highly effective monitoring system tailored for the new, rapid method of the installation of small-scale bridges for a variety of civil engineering applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Masonry arch bridges are one of the oldest forms of bridge construction and have been around for thousands of years. Brick and stone arch bridges have proven to be highly durable as most of them have remained serviceable after hundreds of years. In contrast, many bridges built of modern materials have required extensive repair and strengthening after being in service for a relatively short part of their design life. This paper describes the structural monitoring of a novel flexible concrete arch known as: FlexiArchTM. This is a bridge system that can be transported as a flat-pack system to form an arch in-situ by the use of a flexible polymeric membrane. The system has been developed under a Knowledge Transfer Partnership between Queen’s University Belfast (QUB) and Macrete Ltd. Tievenameena Bridge in Northern Ireland was a replacement bridge for the Northern Ireland Roads Service and was monitored under different axle loadings using a range of sensors including discrete fiber optic Bragg gratings to measure the change in strain in the arch ring under live loading. This paper discusses the results of a laboratory model study carried out at QUB. A scaled arch system was loaded with a simulated moving axle. Various techniques were used to monitor the arch under the moving axle load with particular emphasis on the interaction of the arch ring and engineered backfill.