113 resultados para Bound Entanglement

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We address the presence of bound entanglement in strongly interacting spin systems at thermal equilibrium. In particular, we consider thermal graph states composed of an arbitrary number of particles. We show that for a certain range of temperatures no entanglement can be extracted by means of local operations and classical communication, even though the system is still entangled. This is found by harnessing the independence of the entanglement in some bipartitions of such states with the system's size. Specific examples for one- and two-dimensional systems are given. Our results thus prove the existence of thermal bound entanglement in an arbitrary large spin system with finite-range local interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Does bound entanglement naturally appear in quantum many-body systems? We address this question by showing the existence of bound-entangled thermal states for harmonic oscillator systems consisting of an arbitrary number of particles. By explicit calculations of the negativity for different partitions, we find a range of temperatures for which no entanglement can be distilled by means of local operations, despite the system being globally entangled. We offer an interpretation of this result in terms of entanglement-area laws, typical of these systems. Finally, we discuss generalizations of this result to other systems, including spin chains.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We address the presence of nondistillable (bound) entanglement in natural many-body systems. In particular, we consider standard harmonic and spin-1/2 chains, at thermal equilibrium and characterized by few interaction parameters. The existence of bound entanglement is addressed by calculating explicitly the negativity of entanglement for different partitions. This allows us to individuate a range of temperatures for which no entanglement can be distilled by means of local operations, despite the system being globally entangled. We discuss how the appearance of bound entanglement can be linked to entanglement-area laws, typical of these systems. Various types of interactions are explored, showing that the presence of bound entanglement is an intrinsic feature of these systems. In the harmonic case, we analytically prove that thermal bound entanglement persists for systems composed by an arbitrary number of particles. Our results strongly suggest the existence of bound entangled states in the macroscopic limit also for spin-1/2 systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We study the entanglement distillability properties of thermal states of many-body systems Following the ideas presented in [6, A Ferraro et al., Phys. Rev Lett 100, 080502 (2008)], we first discuss the appearance of bound entanglement in those systems satisfying an entanglement area law Then, we extend these results to other topologies, not necessarily satisfying an entanglement area law We also study whether bound entanglement survives in the macroscopic limit of an infinite number of particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to distribute quantum entanglement is a prerequisite for many fundamental tests of quantum theory and numerous quantum information protocols. Two distant parties can increase the amount of entanglement between them by means of quantum communication encoded in a carrier that is sent from one party to the other. Intriguingly, entanglement can be increased even when the exchanged carrier is not entangled with the parties. However, in light of the defining property of entanglement stating that it cannot increase under classical communication, the carrier must be quantum. Here we show that, in general, the increase of relative entropy of entanglement between two remote parties is bounded by the amount of nonclassical correlations of the carrier with the parties as quantified by the relative entropy of discord. We study implications of this bound, provide new examples of entanglement distribution via unentangled states, and put further limits on this phenomenon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that divisibility of qubit quantum processes implies temporal Tsirelson's bound. We also prove that the classical bound of the temporal Bell's inequality holds for dynamics that can be described by entanglement-breaking channels---a more general class of dynamics than that allowed by classical physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distributed quantum information processing (QIP) is a promising way to bypass problems due to unwanted interactions between elements. However, this strategy presupposes the engineering of protocols for remote processors. In many of them, pairwise entanglement is a key resource. We study a model which distributes entanglement among elements of a delocalized network without local control. The model is efficient both in finite- and infinite-dimensional Hilbert spaces. We suggest a setup of electromechanical systems to implement our proposal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlocal gate operation is based on sharing an ancillary pair of qubits in perfect entanglement. When the ancillary pair is partially entangled, the efficiency of gate operation drops. Using general transformations, we devise probabilistic nonlocal gates, which perform the nonlocal operation conclusively when the ancillary pair is only partially entangled. We show that a controlled purification protocol can be implemented by the probabilistic nonlocal operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A thermal field, which frequently appears in problems of decoherence, provides us with minimal information about the field. We study the interaction of the thermal field and a quantum system composed of two qubits and find that such a chaotic field with minimal information can nevertheless entangle qubits that are prepared initially in a separable state. This simple model of a quantum register interacting with a noisy environment allows us to understand how memory of the environment affects the state of a quantum register.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A beam splitter is a simple, readily available device which can act to entangle output optical fields. We show that a necessary condition for the fields at the output of the beam splitter to be entangled is that the pure input states exhibit nonclassical behavior. We generalize this proof for arbitrary (pure or impure) Gaussian input states. Specifically, nonclassicality of the input Gaussian fields is a necessary condition for entanglement of the field modes with the help of a beam splitter. We conjecture that this is a general property of beam splitters: Nonclassicality of the inputs is a necessary condition for entangling fields in a beam splitter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pure state decoheres into a mixed state as it entangles with an environment. When an entangled two-mode system is embedded in a thermal environment, however, each mode may not be entangled with its environment by their simple linear interaction. We consider an exactly solvable model to study the dynamics of a total system, which is composed of an entangled two-mode system and a thermal environment. The Markovian interaction with the environment is concerned with an array of infinite number of beam splitters. It is shown that many-body entanglement of the system and the environment may play a crucial role in the process of disentangling the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a scheme to physically interface superconducting nanocircuits and quantum optics. We address the transfer of quantum information between systems having different physical natures and defined in Hilbert spaces of different dimensions. In particular, we investigate the transfer of the entanglement initially in a nonclassical state of an infinite dimensional system to a pair of superconducting charge qubits. This setup is able to drive an initially separable state of the qubits into an almost pure, highly entangled state suitable for quantum information processing.