8 resultados para Botero, Yolanda

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three groups of cows representing three ranges of welfare in the production system were included in the study: two groups of Bruna dels Pirineus beef cattle maintained under different management systems (good and semiferal conditions) and a group of Alberes cows, a breed that lives in the mountains (hardest conditions).

In order to identify new stress/welfare biomarkers, serum from Bruna cows living in both environments was subjected to DIGE labelling, two-dimensional electrophoresis and MALDI-MS or ion trap MS. Identification was achieved for 15 proteins, which mainly belonged to three biological functions, the oxidative stress pathway (glutathione peroxidase (GPx) and paraoxonase (PON-1)), the acute phase protein family (Heremans Schmid glycoprotein alpha2 (α2-HSG)) and the complement system.

Biological validation included the Alberes breed. GPx and PON-1 were validated by an enzymatic assay and found to be higher and lower, respectively, in cows living in hard conditions. α2-HSG was validated by ELISA and found to be reduced in hard conditions. Other biomarkers of the redox status were also altered by living conditions: protein carbonyl content, superoxide dismutase (SOD) and glutathione reductase (GR).

Our results show that changes in the redox system are the main adaptation of cows living in challenging environmental conditions. This article is part of a Special Issue entitled: “Farm animal proteomics”.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The NS1 protein of influenza A viruses is the dedicated viral interferon (IFN)-antagonist. Viruses lacking NS1 protein expression cannot multiply in normal cells but are viable in cells deficient in their ability to produce or respond to IFN. Here we report an unbiased mutagenesis approach to identify positions in the influenza A NS1 protein that modulate the IFN response upon infection. A random library of virus ribonucleoproteins containing circa 40 000 point mutants in NS1 were transferred to infectious virus and amplified in MDCK cells unable to respond to interferon. Viruses that activated the interferon (IFN) response were subsequently selected by their ability to induce expression of green-fluorescent protein (GFP) following infection of A549 cells bearing an IFN promoter-dependent GFP gene. Using this approach we isolated individual mutant viruses that replicate to high titers in IFN-compromised cells but, compared to wild type viruses, induced higher levels of IFN in IFN-competent cells and had a reduced capacity to counteract exogenous IFN. Most of these viruses contained not previously reported NS1 mutations within either the RNA-binding domain, the effector domain or the linker region between them. These results indicate that subtle alterations in NS1 can reduce its effectiveness as an IFN antagonist without affecting the intrinsic capacity of the virus to multiply. The general approach reported here may facilitate the generation of replication-proficient, IFN-inducing virus mutants, that potentially could be developed as attenuated vaccines against a variety of viruses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

UNLABELLED: Influenza A viruses counteract the cellular innate immune response at several steps, including blocking RIG I-dependent activation of interferon (IFN) transcription, interferon (IFN)-dependent upregulation of IFN-stimulated genes (ISGs), and the activity of various ISG products; the multifunctional NS1 protein is responsible for most of these activities. To determine the importance of other viral genes in the interplay between the virus and the host IFN response, we characterized populations and selected mutants of wild-type viruses selected by passage through non-IFN-responsive cells. We reasoned that, by allowing replication to occur in the absence of the selection pressure exerted by IFN, the virus could mutate at positions that would normally be restricted and could thus find new optimal sequence solutions. Deep sequencing of selected virus populations and individual virus mutants indicated that nonsynonymous mutations occurred at many phylogenetically conserved positions in nearly all virus genes. Most individual mutants selected for further characterization induced IFN and ISGs and were unable to counteract the effects of exogenous IFN, yet only one contained a mutation in NS1. The relevance of these mutations for the virus phenotype was verified by reverse genetics. Of note, several virus mutants expressing intact NS1 proteins exhibited alterations in the M1/M2 proteins and accumulated large amounts of deleted genomic RNAs but nonetheless replicated to high titers. This suggests that the overproduction of IFN inducers by these viruses can override NS1-mediated IFN modulation. Altogether, the results suggest that influenza viruses replicating in IFN-competent cells have tuned their complete genomes to evade the cellular innate immune system and that serial replication in non-IFN-responsive cells allows the virus to relax from these constraints and find a new genome consensus within its sequence space.

IMPORTANCE: In natural virus infections, the production of interferons leads to an antiviral state in cells that effectively limits virus replication. The interferon response places considerable selection pressure on viruses, and they have evolved a variety of ways to evade it. Although the influenza virus NS1 protein is a powerful interferon antagonist, the contributions of other viral genes to interferon evasion have not been well characterized. Here, we examined the effects of alleviating the selection pressure exerted by interferon by serially passaging influenza viruses in cells unable to respond to interferon. Viruses that grew to high titers had mutations at many normally conserved positions in nearly all genes and were not restricted to the NS1 gene. Our results demonstrate that influenza viruses have fine-tuned their entire genomes to evade the interferon response, and by removing interferon-mediated constraints, viruses can mutate at genome positions normally restricted by the interferon response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Retinal angiogenesis is tightly regulated to meet oxygenation and nutritional requirements. In diseases such as proliferative diabetic retinopathy and neovascular age-related macular degeneration, uncontrolled angiogenesis can lead to blindness. Our goal is to better understand the molecular processes controlling retinal angiogenesis and discover novel drugs that inhibit retinal neovascularization. Phenotype-based chemical screens were performed using the ChemBridge DiversetTM library and inhibition of hyaloid vessel angiogenesis in Tg(fli1:EGFP) zebrafish. 2-[(E)-2-(Quinolin-2-yl)vinyl]phenol, (quininib) robustly inhibits developmental angiogenesis at 4–10 μM in zebrafish and significantly inhibits angiogenic tubule formation in HMEC-1 cells, angiogenic sprouting in aortic ring explants, and retinal revascularization in oxygen-induced retinopathy mice. Quininib is well tolerated in zebrafish, human cell lines, and murine eyes. Profiling screens of 153 angiogenic and inflammatory targets revealed that quininib does not directly target VEGF receptors but antagonizes cysteinyl leukotriene receptors 1 and 2 (CysLT1–2) at micromolar IC50 values. In summary, quininib is a novel anti-angiogenic small-molecule CysLT receptor antagonist. Quininib inhibits angiogenesis in a range of cell and tissue systems, revealing novel physiological roles for CysLT signaling. Quininib has potential as a novel therapeutic agent to treat ocular neovascular pathologies and may complement current anti-VEGF biological agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Harmful algal blooms (HABs) are a natural global phenomena emerging in severity and extent. Incidents have many economic, ecological and human health impacts. Monitoring and providing early warning of toxic HABs are critical for protecting public health. Current monitoring programmes include measuring the number of toxic phytoplankton cells in the water and biotoxin levels in shellfish tissue. As these efforts are demanding and labour intensive, methods which improve the efficiency are essential. This study compares the utilisation of a multitoxin surface plasmon resonance (multitoxin SPR) biosensor with enzyme-linked immunosorbent assay (ELISA) and analytical methods such as high performance liquid chromatography with fluorescence detection (HPLC-FLD) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) for toxic HAB monitoring efforts in Europe. Seawater samples (n = 256) from European waters, collected 2009-2011, were analysed for biotoxins: saxitoxin and analogues, okadaic acid and dinophysistoxins 1/2 (DTX1/DTX2) and domoic acid responsible for paralytic shellfish poisoning (PSP), diarrheic shellfish poisoning (DSP) and amnesic shellfish poisoning (ASP), respectively. Biotoxins were detected mainly in samples from Spain and Ireland. France and Norway appeared to have the lowest number of toxic samples. Both the multitoxin SPR biosensor and the RNA microarray were more sensitive at detecting toxic HABs than standard light microscopy phytoplankton monitoring. Correlations between each of the detection methods were performed with the overall agreement, based on statistical 2 × 2 comparison tables, between each testing platform ranging between 32% and 74% for all three toxin families illustrating that one individual testing method may not be an ideal solution. An efficient early warning monitoring system for the detection of toxic HABs could therefore be achieved by combining both the multitoxin SPR biosensor and RNA microarray.