13 resultados para Blue-green-alga

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spread of nonindigenous species into new habitats is having a drastic effect on natural ecosystems and represents an increasing threat to global biodiversity. In the marine environment, where data on the movement of invasive species is scarce, the spread of alien seaweeds represents a particular problem. We have employed a combination of plastid microsatellite markers and DNA sequence data from three regions of the plastid genome to trace the invasive history of the green alga Codium fragile ssp. tomentosoides. Extremely low levels of genetic variation were detected, with only four haplotypes present in the species’ native range in Japan and only two of these found in introduced populations. These invasive populations displayed a high level of geographical structuring of haplotypes, with one haplotype localized in the Mediterranean and the other found in Northwest Atlantic, northern European and South Pacific populations. Consequently, we postulate that there have been at least two separate introductions of C. fragile ssp. tomentosoides from its native range in the North Pacific.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the advent of 'ancient DNA' studies on preserved material of extant and extinct species, museums and herbaria now represent an important although still underutilized resource in molecular ecology. The ability to obtain sequence data from archived specimens can reveal the recent history of cryptic species and introductions. We have analysed extant and herbarium samples of the highly invasive green alga Codium fragile, many over 100 years old, to identify cryptic accessions of the invasive strain known as C. fragile ssp. tomentosoides, which can be identified by a unique haplotype. Molecular characterization of specimens previously identified as native in various regions shows that the invasive tomentosoides strain has been colonizing new habitats across the world for longer than records indicate, in some cases nearly 100 years before it was noticed. It can now be found in the ranges of all the other native haplotypes detected, several of which correspond to recognized subspecies. Within regions in the southern hemisphere there was a greater diversity of haplotypes than in the northern hemisphere, probably as a result of dispersal by the Antarctic Circumpolar Current. The findings of this study highlight the importance of herbaria in preserving contemporaneous records of invasions as they occur, especially when invasive taxa are cryptic.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The microfilamentous green alga Uronema curvatum is widely distributed along the western and eastern coasts of the north Atlantic Ocean where it typically grows on crustose red algae and on haptera of kelps in subtidal habitats. The placement of this marine species in a genus of freshwater Chlorophyceae had been questioned. Molecular phylogenetic analysis of nuclear-encoded small and large subunit rDNA sequences reveal that U. curvatum is closely related to the ulvophycean order Cladophorales, with which it shares a number of morphological features, including a siphonocladous level of organization and zoidangial development. The divergent phylogenetic position of U. curvatum, sister to the rest of the Cladophorales, along with a combination of distinctive morphological features, such as the absence of pyrenoids, the diminutive size of the unbranched filaments and the discoid holdfast, warrants the recognition of a separate genus, Okellya, within a new family of Cladophorales, Okellyaceae. The epiphytic Urospora microscopica from Norway, which has been allied with U. curvatum, is revealed as a member of the cladophoralean genus Chaetomorpha and is herein transferred to that genus as C. norvegica nom. nov.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rhodopsin, the light sensitive receptor responsible for blue-green vision, serves as a prototypical G protein-coupled receptor (GPCR). Upon light absorption, it undergoes a series of conformational changes that lead to the active form, metarhodopsin II (META II), initiating a signaling cascade through binding to the G protein transducin (G(t)). Here, we first develop a structural model of META II by applying experimental distance restraints to the structure of lumi-rhodopsin (LUMI), an earlier intermediate. The restraints are imposed by using a combination of biased molecular dynamics simulations and perturbations to an elastic network model. We characterize the motions of the transmembrane helices in the LUMI-to-META II transition and the rearrangement of interhelical hydrogen bonds. We then simulate rhodopsin activation in a dynamic model to study the path leading from LUMI to our META II model for wild-type rhodopsin and a series of mutants. The simulations show a strong correlation between the transition dynamics and the pharmacological phenotypes of the mutants. These results help identify the molecular mechanisms of activation in both wild type and mutant rhodopsin. While static models can provide insights into the mechanisms of ligand recognition and predict ligand affinity, a dynamic model of activation could be applicable to study the pharmacology of other GPCRs and their ligands, offering a key to predictions of basal activity and ligand efficacy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cyanobacterial (blue-green algal) toxins are extremely toxic naturally occurring substances which display hepato- and neurotoxic behaviour (1, 2). In this paper we report the application of titanium dioxide photocatalysis for the destruction of two of these compounds, microcystin-LR and anatoxin-a. The destruction of microcystin appears to follow Langmuir-Hinshelwood kinetics although a discrepancy was observed between adsorption constants determined for the photocatalytic process with those obtained from dark isotherms. A square root dependence between illumination intensity and rate of microcystin destruction was noted. When the destruction was performed in the presence of the naturally occurring pigment it appeared that the pigment also contributes to the destruction of the toxin. Toxicity studies on the photocatalysed toxin solutions indicates that the toxicity is substantially reduced within 30 min photolysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microcystins and nodularin are toxic cyanobacterial secondary metabolites produced by cyanobacteria that pose a threat to human health in drinking water. Conventional water treatment methods often fail to remove these toxins. Advanced oxidation processes such as TiO2 photocatalysis have been shown to effectively degrade these compounds. A particular issue that has limited the widespread application of TiO2 photocatalysis for water treatment has been the separation of the nanoparticulate power from the treated water. A novel catalyst format, TiO2 coated hollow glass spheres (Photospheres™), is far more easily separated from treated water due to its buoyancy. This paper reports the photocatalytic degradation of eleven microcystin variants and nodularin in water using Photospheres™. It was found that the Photospheres™ successfully decomposed all compounds in 5 minutes or less. This was found to be comparable to the rate of degradation observed using a Degussa P25 material, which has been previously reported to be the most efficient TiO2 for photocatalytic degradation of microcystins in water. Furthermore, it was observed that the degree of initial catalyst adsorption of the cyanotoxins depended on the amino acid in the variable positions of the microcystin molecule. The fastest degradation (2 minutes) was observed for the hydrophobic variants (microcystin-LY, -LW, -LF). Suitability of UV-LEDs as an alternative low energy light source was also evaluated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

N-(aminoalkyl)-4-chloronaphthalene-
1,8-dicarboximides 1, N-
(aminoalkyl)-4-acetamidonaphthalene-
1,8-dicarboximides 3 and N,N'-bis(aminoalkyl)-
perylene-3,4:9,10-tetracarboxydiimides
4 show good fluorescent off ±
on switching in aqueous alcoholic solution
with protons as required for fluorescent
PET sensor design. The excitation
wavelengths lie in the ultraviolet
(lmaxˆ345 and 351 nm) for 1 and 3 and
in the blue-green (lmaxˆ528, 492 and
461 nm) for 4; the emission wavelengths
lie in the violet (lmaxˆ408 nm) for 1, in
the blue (lmaxˆ474 nm) for 3 and in the
yellow-orange (lmaxˆ543 and 583 nm)
for 4. Compound 4b shows substantial
fluorescence enhancement with protons
when immobilized in a poly(vinylchloride)
matrix, provided that 2-nitrophenyloctyl
ether plasticizer and potassium
tetrakis(4-chlorophenyl)borate additive
are present to prevent dye crystallization
and to facilitate proton diffusion
into the membrane, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zinc oxide is synthesised at low temperature (80A degrees C) in nanosheet geometry using a substrate-free, single-step, wet-chemical method and is found to act as a blue-white fluorophore. Investigation by atomic force microscopy, electron microscopy, and X-ray diffraction confirms zinc oxide material of nanosheet morphology where the individual nanosheets are polycrystalline in nature with the crystalline structure being of wurtzite character. Raman spectroscopy indicates the presence of various defects, while photoluminescence measurements show intense green (centre wavelength approximately 515 nm) blue (approximately 450 nm), and less dominant red (approximately 640 nm) emissions due to a variety of vacancy and interstitial defects, mostly associated with surfaces or grain boundaries. The resulting colour coordinate on the CIE-1931 standard is (0.23, 0.33), demonstrating potential for use as a blue-white fluorescent coating in conjunction with ultraviolet emitting LEDs. Although the defects are often treated as draw-backs of ZnO, here we demonstrate useful broadband visible fluorescence properties in as-prepared ZnO. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photophysics of the green fluorescent protein is governed by the electronic structure of the chromophore at the heart of its β-barrel protein structure. We present the first two-color, resonance-enhanced, multiphoton ionization spectrum of the isolated neutral chromophore in vacuo with supporting electronic structure calculations. We find the absorption maximum to be 3.65 ± 0.05 eV (340 ± 5 nm), which is blue-shifted by 0.5 eV (55 nm) from the absorption maximum of the protein in its neutral form. Our results show that interactions between the chromophore and the protein have a significant influence on the electronic structure of the neutral chromophore during photoabsorption and provide a benchmark for the rational design of novel chromophores as fluorescent markers or photomanipulators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solution-processed hybrid organic–inorganic lead halide perovskites are emerging as one of the most promising candidates for low-cost light-emitting diodes (LEDs). However, due to a small exciton binding energy, it is not yet possible to achieve an efficient electroluminescence within the blue wavelength region at room temperature, as is necessary for full-spectrum light sources. Here, we demonstrate efficient blue LEDs based on the colloidal, quantum-confined 2D perovskites, with precisely controlled stacking down to one-unit-cell thickness (n = 1). A variety of low-k organic host compounds are used to disperse the 2D perovskites, effectively creating a matrix of the dielectric quantum wells, which significantly boosts the exciton binding energy by the dielectric confinement effect. Through the Förster resonance energy transfer, the excitons down-convert and recombine radiatively in the 2D perovskites. We report room-temperature pure green (n = 7–10), sky blue (n = 5), pure blue (n = 3), and deep blue (n = 1) electroluminescence, with record-high external quantum efficiencies in the green-to-blue wavelength region.