54 resultados para Biodiversity loss

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given currently high rates of extinction, it is critical to be able to predict how ecosystems will respond to loss of species and consequent changes in community structure. Much previous research in this area has been based on terrestrial systems, using synthetically assembled communities. There has beer! much less research on inter-trophic effects in different systems, using in situ removal experiments. Problems with the design of early experiments have made it difficult to determine whether reductions in ecosystem functioning in low diversity treatments were due to the number of species present or merely to the reduced likelihood of including particular (

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Public concern over biodiversity loss is often rationalized as a threat to ecosystem functioning, but biodiversity-ecosystem functioning (BEF) relations are hard to empirically quantify at large scales. We use a realistic marine food-web model, resolving species over five trophic levels, to study how total fish production changes with species richness. This complex model predicts that BEF relations, on average, follow simple Michaelis-Menten curves when species are randomly deleted. These are shaped mainly by release of fish from predation, rather than the release from competition expected from simpler communities. Ordering species deletions by decreasing body mass or trophic level, representing 'fishing down the food web', accentuates prey-release effects and results in unimodal relationships. In contrast, simultaneous unselective harvesting diminishes these effects and produces an almost linear BEF relation, with maximum multispecies fisheries yield at approximate to 40% of initial species richness. These findings have important implications for the valuation of marine biodiversity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The relationship between biodiversity and ecological processes is currently the focus of considerable research effort, made all the more urgent by the rate of biodiversity loss world-wide. Rigorous experimental approaches to this question have been dominated by terrestrial ecologists, but shallow-water marine systems offer great opportunities by virtue of their relative ease of manipulation, fast response times and well-understood effects of macrofauna on sediment processes. In this paper, we describe a series of experiments whereby species richness has been manipulated in a controlled way and the concentrations of nutrients (ammonium, nitrate and phosphate) in the overlying water measured under these different treatments. The results indicate variable effects of species and location on ecosystem processes, and are discussed in the context of emerging mainstream ecological theory on biodiversity and ecosystem relations. Extensions of the application of the experimental approach to species-rich, large-scale benthic systems are discussed and the potential for novel analyses of existing data sets is highlighted. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Species introductions are considered one of the major drivers of biodiversity loss via ecological interactions and genetic admixture with local fauna. We examined two well-recognized fish species, native whitefish (Coregonus lavaretus) and introduced vendace (Coregonus albula), as well as their morphological hybrids in a single lake to test for selection against hybrids and backcrosses in the wild. A representative random subsample of 693 individuals (27.8%) was taken from the total catch of coregonids. This subsample was examined with the aim to select c. 50 individuals of pure whitefish (n = 52), pure vendace (n = 55) and putative hybrid (n = 19) for genetic analyses. The subsequent microsatellites and mitochondrial (mt) DNA analyses provided compelling evidence of hybridization and introgression. Of the 126 fish examined, four were found to be F-1, 14 backcrosses to whitefish and seven backcrosses to vendace. The estimates of historical gene flow suggested higher rates from introduced vendace into native whitefish than vice versa, whereas estimates of contemporary gene flow were equal. Mitochondrial introgression was skewed, with 18 backcrosses having vendace mtDNA and only three with whitefish mtDNA. Hybrids and backcrosses had intermediate morphology and niche utilization compared with parental species. No evidence of selection against hybrids or backcrosses was apparent, as both hybrid and backcross growth rates and fecundities were high. Hybrids (F-1) were only detected in 2 year-classes, suggesting temporal variability in mating between vendace and whitefish. However, our data show that hybrids reached sexual maturity and reproduced actively, with backcrosses recorded from six consecutive year-classes, whereas no F-2 individuals were found. The results indicate widespread introgression, as 10.8% of coregonids were estimated to be backcrosses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To understand the consequences of biodiversity loss, it is necessary to test how biodiversity-ecosystem functioning relationships may vary with predicted environmental change. In particular, our understanding will be advanced by studies addressing the interactive effects of multiple stressors on the role of biodiversity across trophic levels. Predicted increases in wave disturbance and ocean warming, together with climate-driven range shifts of key consumer species, are likely to have profound impacts on the dynamics of coastal marine communities. We tested whether wave action and temperature modified the effects of gastropod grazer diversity (Patella vulgata, Littorina littorea and Gibbula umbilicalis) on algal assemblages in experimental rock pools. The presence or absence of L. littorea appeared to drive changes in microalgal and macroalgal biomass and macroalgal assemblage structure. Macroalgal biomass also decreased with increasing grazer species richness, but only when wave action was enhanced. Further, independently of grazer diversity, wave action and temperature had interactive effects on macroalgal assemblage structure. Warming also led to a reversal of grazer-macroalgal interaction strengths from negative to positive, but only when there was no wave action. Our results show that hydrodynamic disturbance can exacerbate the effects of changing consumer diversity, and may also disrupt the influence of other environmental stressors on key consumer-resource interactions. These findings suggest that the combined effects of anticipated abiotic and biotic change on the functioning of coastal marine ecosystems, although difficult to predict, may be substantial.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The consequences of biodiversity loss in the face of environmental change remain difficult to predict, given the complexity of interactions among species and the context-dependency of their functional roles within ecosystems. Predictions may be enhanced by studies testing how the interactive effects of species loss from different functional groups vary with important environmental drivers. On rocky shores, limpets and barnacles are recognised as key grazers and ecosystem engineers, respectively. Despite the large body of research examining the combined effects of limpet and barnacle removal, it is unclear how their relative importance varies according to wave exposure, which is a dominant force structuring intertidal communities. We tested the responses of algal communities to the removal of limpets and barnacles on three sheltered and three wave-exposed rocky shores on the north coast of Ireland. Limpet removal resulted in a relative increase in microalgal biomass on a single sheltered shore only, but led to the enhanced accumulation of ephemeral macroalgae on two sheltered shores and one exposed shore. On average, independently of wave exposure or shore, ephemeral macroalgae increased in response to limpet removal, but only when barnacles were removed. On two sheltered shores and one exposed shore, however, barnacles facilitated the establishment of fucoid macroalgae following limpet removal. Therefore, at the scale of this study, variability among individual shores was more important than wave exposure per se in determining the effect of limpet removal and its interaction with that of barnacles. Overall, these findings demonstrate that the interactive effects of losing key species from different functional groups may not vary predictably according to dominant environmental factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Declining populations of bee pollinators are a cause of concern, with major repercussions for biodiversity loss and food security. RNA viruses associated with honeybees represent a potential threat to other insect pollinators, but the extent of this threat is poorly understood. This study aims to attain a detailed understanding of the current and ongoing risk of emerging infectious disease (EID) transmission between managed and wild pollinator species across a wide range of RNA viruses. Within a structured large-scale national survey across 26 independent sites, we quantify the prevalence and pathogen loads of multiple RNA viruses in co-occurring managed honeybee (Apis mellifera) and wild bumblebee (Bombus spp.) populations. We then construct models that compare virus prevalence between wild and managed pollinators. Multiple RNA viruses associated with honeybees are widespread in sympatric wild bumblebee populations. Virus prevalence in honeybees is a significant predictor of virus prevalence in bumblebees, but we remain cautious in speculating over the principle direction of pathogen transmission. We demonstrate species-specific differences in prevalence, indicating significant variation in disease susceptibility or tolerance. Pathogen loads within individual bumblebees may be high and in the case of at least one RNA virus, prevalence is higher in wild bumblebees than in managed honeybee populations. Our findings indicate widespread transmission of RNA viruses between managed and wild bee pollinators, pointing to an interconnected network of potential disease pressures within and among pollinator species. In the context of the biodiversity crisis, our study emphasizes the importance of targeting a wide range of pathogens and defining host associations when considering potential drivers of population decline.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biodiversity loss is a global problem with freshwater bivalves considered amongst the most
endangered biota. The freshwater pearl mussel, Margaritifera margaritifera, is declining
throughout its range owing to habitat degradation and overexploitation. In most of its range,
populations are regarded as reproductively non-functional which has led to the development
of captive breeding programmes. A novel method of releasing M. margaritifera was trialled,
with captive-bred juveniles being released into the rivers caged in ‘mussels silos’ (protective
concrete domes with ventilation creating upwelling to ensure water through flow). We
released 240 juvenile mussels and survival and growth rates were monitored for 18 months
post-release for three size classes: A (13.01-20.00mm); B (10.01-13.00mm); and C (4.01-
10.00mm). We explicitly tested two experimental treatments; one where sediment was added
to each silo (allowing mussels to orientate and burrow) and one without sediment. Survival
by the end of the experiment at month 18 was significantly higher for the largest size class at
97% (though growth was lowest in this cohort), and lowest for the smallest size class at 61%
(though growth was highest in this cohort). Survival and growth were unaffected by the
experimental treatment suggesting that adding sediment offered no advantage. Growth was
positively correlated with both water temperature and the particle size of suspended solids
(both of which were collinear, peaking in summer). There are a large number of ex situ
breeding programmes for freshwater pearl mussels throughout Europe and our finding
suggest that the use of ‘mussel silos’ could be a useful tool to protecting juvenile mussels
allowing them to be released at a relatively early stage of development, minimising the risk of
domestication.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The focus of this study was to disentangle the effects of multiple stressors on biodiversity, ecosystem functioning and stability. This project examined the effects of anthropogenic increased nutrient loads on the diversity of coastal ecosystems and the effects of loss of species on ecosystem functioning. Specifically, the direct effect of sewage outfalls on benthic communities was assessed using a fully replicated survey that incorporated spatial and temporal variation. In addition, two field experiments examined the effects of loss of species at multiple trophic levels, and tested for potential interactive effects with enhanced nutrient concentration conditions on benthic assemblage structure and ecosystem functioning. This research addressed priority issues outlined in the Biodiversity Knowledge Programme for Ireland (2006) and also aimed to deliver information relevant to European Union (EU) directives (the Water Framework Directive [WFD], the Habitats Directive and the Marine Strategy Framework Directive).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review the uses of fossil insects, particularly Coleoptera (beetles) and Chironomidae (non-biting midges) from ancient deposits to inform the study of wetland ecosystems and their ecological and restoration processes. In particular, we focus on two contrasting ecosystems, drawing upon research undertaken by us on British raised mire peats and shallow lake systems, one an essentially terrestrial ecosystem, the other aquatic, but in which wetland insects play an important and integral part. The study of raised mire peats suggests that faunal stability is a characteristic of these wetland systems, over what appear to be extensive periods of time (up to several millennia), whilst studies of shallow lake ecosystems over recent timescales indicates that faunal instability appears to be more common, usually driven by increasing eutrophication. Drawing upon a series of fossil Coleoptera records spanning several thousand years from Hatfield Moors, south Yorkshire, we reconstruct in some detail the mire’s ontogeny and fluctuations in site hydrology and vegetation cover, illustrating the intimate association between substrate, topography and peat development. A comparison between fossil and modern beetle populations indicates that the faunal characteristics of this mire and its adjacent neighbour, Thorne Moors, become established during the early phases of peat development, including its rare endemics, and that the faunal biodiversity on the sites today is dictated by complex site histories. The over-riding characteristic of these faunas is of stability over several thousand years, which has important implications for the restoration of degraded sites, especially those where refugial areas are limited. In contrast, analyses of fossil Chironomidae from shallow lakes allow researchers to track changes in limnological status and while attempts have been made to reconstruct changes in nutrient levels quantitatively, the chironomids respond indirectly to such changes, typically mediated through complex ecosystem dynamics such as changes in fish and/or macrophyte communities. These changes are illustrated via historic chironomid stratigraphies and diversity indices from a range of shallow lakes located across Britain: Slapton Ley, Frensham Great Pond, Fleet Pond, Kyre Pool and Barnes Loch. These sites have shown varying degrees of eutrophication over recent timescales which tends to be associated with a decline in chironomid diversity. While complex functional processes exist within these ecosystems, our evidence suggests that one of the key drivers in the loss of shallow lake chironomid diversity appears to be the loss of aquatic macrophytes. Overall, while chironomids do show a clear response to altered nutrient regimes, multi-proxy reconstructions are recommended for a clear interpretation of past change. We conclude that if we are to have a better understanding of biota at the ecosystem level we need to know more of the complex interactions between different insect groups as well as with other animal and plant communities. A palaeoecological approach is thus crucial in order to assess the role of insect groups in ecosystem processes, both in the recent past and over long time scales, and is essential for wetland managers and conservation organisations involved in long term management and restoration of wetland systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the last 50 years, agricultural intensification has caused many wild plant and animal species to go extinct regionally or nationally and has profoundly changed the functioning of agro-ecosystems. Agricultural intensification has many components, such as loss of landscape elements, enlarged farm and field sizes and larger inputs of fertilizer and pesticides. However, very little is known about the relative contribution of these variables to the large-scale negative effects on biodiversity. In this study, we disentangled the impacts of various components of agricultural intensification on species diversity of wild plants, carabids and ground-nesting farmland birds and on the biological control of aphids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Loss of biodiversity and nutrient enrichment are two of the main human impacts on ecosystems globally, yet we understand very little about the interactive effects of multiple stressors on natural communities and how this relates to biodiversity and ecosystem functioning. Advancing our understanding requires the following: (1) incorporation of processes occurring within and among trophic levels in natural ecosystems and (2) tests of context-dependency of species loss effects. We examined the effects of loss of a key predator and two groups of its prey on algal assemblages at both ambient and enriched nutrient conditions in a marine benthic system and tested for interactions between the loss of functional diversity and nutrient enrichment on ecosystem functioning. We found that enrichment interacted with food web structure to alter the effects of species loss in natural communities. At ambient conditions, the loss of primary consumers led to an increase in biomass of algae, whereas predator loss caused a reduction in algal biomass (i.e. a trophic cascade). However, contrary to expectations, we found that nutrient enrichment negated the cascading effect of predators on algae. Moreover, algal assemblage structure varied in distinct ways in response to mussel loss, grazer loss, predator loss and with nutrient enrichment, with compensatory shifts in algal abundance driven by variation in responses of different algal species to different environmental conditions and the presence of different consumers. We identified and characterized several context-dependent mechanisms driving direct and indirect effects of consumers. Our findings highlight the need to consider environmental context when examining potential species redundancies in particular with regard to changing environmental conditions. Furthermore, non-trophic interactions based on empirical evidence must be incorporated into food web-based ecological models to improve understanding of community responses to global change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our knowledge of the effects of consumer species loss on ecosystem functioning is limited by a paucity of manipulative field studies, particularly those that incorporate inter-trophic effects. Further, given the ongoing transformation of natural habitats by anthropogenic activities, studies should assess the relative importance of biodiversity for ecosystem processes across different environmental contexts by including multiple habitat types. We tested the context-dependency of the effects of consumer species loss by conducting a 15-month field experiment in two habitats (mussel beds and rock pools) on a temperate rocky shore, focussing on the responses of algal assemblages following the single and combined removals of key gastropod grazers (Patella vulgata, P. ulyssiponensis, Littorina littorea and Gibbula umbilicalis). In both habitats, the removal of limpets resulted in a larger increase in macroalgal richness than that of either L. littorea or G. umbilicalis. Further, by the end of the study, macroalgal cover and richness were greater following the removal of multiple grazer species compared to single species removals. Despite substantial differences in physical properties and the structure of benthic assemblages between mussel beds and rock pools, the effects of grazer loss on macroalgal cover, richness, evenness and assemblage structure were remarkably consistent across both habitats. There was, however, a transient habitat-dependent effect of grazer removal on macroalgal assemblage structure that emerged after three months, which was replaced by non-interactive effects of grazer removal and habitat after 15 months. This study shows that the effects of the loss of key consumers may transcend large abiotic and biotic differences between habitats in rocky intertidal systems. While it is clear that consumer diversity is a primary driver of ecosystem functioning, determining its relative importance across multiple contexts is necessary to understand the consequences of consumer species loss against a background of environmental change.